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Abstract—Cloud database services promise high performance,
high availability, and elastic scalability. The system that provides
cloud database services must, hence, be designed and managed
in a way to achieve these high quality objectives. There are two
technology trends that facilitate the design and management of
cloud database service systems. First, the development of dis-
tributed replicated database software that is optimally designed
for highly available and scalable Web applications and offered as
open source software. Second, the possibility to deploy the system
on cloud computing infrastructure to facilitate availability and
scalability via on-demand provisioning of geo-located servers.

We argue that a runtime quality measurement and analysis
framework is necessary for the successful runtime management
of cloud database service systems. Our framework offers three
contributions over the state of the art: (i) the analysis of scaling
strategies, (ii) the analysis of conflicts between contradictory
objectives, and (iii) the analysis of system configuration changes
on runtime performance and availability.

I. INTRODUCTION

Cloud computing is a model for building scalable and highly
available services on top of an elastic pool of geo-located
configurable resources, such as virtual machines, network
bandwidth, and storage [1]. Elasticity means that additional
resource capacity can be rapidly allocated (and de-allocated)
to a system in a matter of seconds or minutes without
significantly affecting or interrupting the services that are
using these resources. The resources which are located in
multiple data centers around the world are payed per use.
Thereby, customers have a model for building affordable geo-
scalable services that do not slow down or become unavailable
under increasing workloads – as long as the customer’s credit
card permits the payment for resource capacity. Moreover,
customers can build dependable services with replicated data
storage that tolerate server failures or even entire data center
disasters.

A. Terminology

Cloud database services promise high performance data
processing, i.e., in the case of Web transaction processing
cloud databases, low upper-percentile response time and elasti-
cally scalable throughput. Moreover, the services are supposed
to be always available. At the same time, we can observe
an increasing popularity of so-called NoSQL databases, i.e,
database software systems that are designed in favor of high

performance and high availability by means of data distribu-
tion and replication mechanisms. NoSQL databases usually
have a flexible schema and provide less generic query capabil-
ities than relational databases. Instead, NoSQL databases are
optimized for transactional Web applications that usually only
require query capabilities of limited complexity, such as simple
HTTP methods. Nonetheless, relational database systems can
also be deployed at Web scale if some of their features and
design principles, such as data normalization, are sacrificed.

We refer to database software that is designed for high
performance and high availability Web applications as cloud
database software. Compute cloud users can deploy and man-
age cloud database software on top of a globally distributed
compute cloud, e.g., Amazon EC2. We refer to such a system
as cloud database service system.

B. Motivation

Managing the quality of service of the cloud database
service system is necessary because applications on top of
the system can usually only function properly if performance
guarantees are given by the system. For example, the Amazon
Dynamo key-value database negotiates service level agree-
ments (SLAs) with the service clients, particularly SLAs
on the request response time that can be guaranteed for a
client-specified throughput distribution [2]. Flash crowds are
a phenomenon where an application suddenly becomes very
popular and must handle quickly growing workloads while
maintaining service performance qualities [3].

C. Contributions

The quality of service depends on both the database soft-
ware design and the runtime management of the system on
top of the pool of on-demand servers in the compute cloud.
In this paper, we focus on the latter and argue that a quality
measurement and analysis framework is a necessary tool for
the successful runtime management of cloud database service
systems. In particular, our framework
(i) can be used for the analysis of scaling strategies,

(ii) allows more balanced database system optimization de-
cisions in the face of conflicting objectives, and

(iii) can be used for the analysis of system configuration
changes on runtime performance and availability.



TABLE I
SELECTED PERFORMANCE & AVAILABILITY CONFIGURATION PARAMETERS OF TYPICAL CLOUD DATABASE SERVICES AND SYSTEMS

Cloud DB Service System Design Data Model Service Performance & Availability Configuration Parameters
Amazon SimpleDB Unknown Column-oriented Read consistency levels
Amazon DynamoDB Peer-to-Peer Ring Column-oriented Read consistency levels, provisioned throughput
Amazon RDS Master-Slave Relational schema Multi-AZ deployments, read replicas
Cloud DB System System Design Data Model Cluster Performance & Availability Configuration Parameters
Cassandra Peer-to-Peer Ring Column-oriented Consistency levels, replication factor and replica placement, partitioning
Riak Peer-to-Peer Ring No schema Consistency levels, replication factor
HBase Master-Slave Column-oriented Replication factor and replica placement, distribution via HDFS
MongoDB Master-Slave Document-oriented Replication groups, sharding
MySQL Master-Slave Relational schema Cluster replication, sharding

The use of fine-grained quality metrics allows fine-grained
quality control and quality optimization of a running system
which is subject to variable workloads as well as variable
server and network failures.

D. System configuration

A cloud database service system is set up on a compute
cloud, i.e., an elastic scalable pool of virtualized servers.
Desirable qualities include high performance and high avail-
ability. The qualities are enforced via system configuration
parameters. We propose a parametric configuration model that
is divided into 3 levels:

1) Compute cloud management: capacity management
2) Cluster management: data replication and distribution
3) Server management: operating system and software
In the context of our current framework, the compute

cloud management level is primarily concerned with capacity
management, i.e., the allocation and de-allocation of (differ-
ently sized) virtual machines. This level could be extended to
encompass security-related configuration parameters, such as
firewall settings, key exchange mechanisms, et cetera. On the
cluster management level, our framework currently focuses on
data replication and distribution mechanisms, however, other
configuration parameters could also be of interest, such as
failure detection or access control mechanisms. On the server
management level, the framework focuses on operating system
and software settings, such as file system settings, threads,
caching, data compression, etc.

II. RELATED WORK

Cloud database service systems should provide services
with supreme performance, elastic scalability, and availability.
At the same time, other qualities that are potentially harmful to
performance and availability, such as strong data consistency,
are desirable, as well. Moreover, cost of service should be as
low as possible and is typically constrained by a budget.

A. Elastic Scalability

Elastic scalability can be measured with a variety of metrics,
for example speed-up, size-up, and scale-up [4], [5]. Speed-up
refers to the question how response time reacts to new servers
that are added, ceteris paribus, to the running system. Scale-
up refers to the question how much throughput can be gained

by adding more servers and increasing the workload volume,
ceteris paribus.

The authors of [6] suggest measuring scalability with a
regression function and the corresponding correlation coef-
ficient. The deviation from linear scalability can then be
measured with the correlation coefficient of a linear regression
function of throughput depending on the number of servers.
Furthermore, the authors suggest a metric to measure peak-
workload scalability as a percentage of operations per second
that complete within a given response time service level in
relation to all issued operations per second during a peak load
period. The authors of [7] suggest an elasticity metric that
measures the response time impact during the bootstrapping
phase of a new node into a cluster.

B. Dependability

Cloud database service systems are designed for high
availability. In the event of server or network failures, it
is desirable that a system does not suddenly stop serving
requests. Even when entire data centers go down, the cloud
database services should be available. Under such failure
scenarios, in distributed replicated systems it is hard or even
impossible to provide all qualities, particularly data availability
and consistency, to their full extent [8], [9].

The authors of [6] suggest a metric for dependability (fault-
tolerance) by specifying a percentage of failing resources
and then measuring the number of operations that complete
within a given response time service level in relation to all
issued operation requests. The authors of [10] differentiate
availability into two separate metrics, harvest (precision in
terms of the fraction of response data that is returned) and
yield (binary availability/unavailability). As discussed in [11],
harvest can also be used as a measure of consistency since
incomplete responses can appear as inconsistent responses.
The interpretation of harvest thus depends on the client-side
implementation.

C. Consistency

Literature knows a multitude of consistency definitions.
For our purposes, though, strict consistency means that all
replica of a given data item are identical. This is a necessary
precondition for ACID (Atomicity, Consistency, Isolation,
Durability) guarantees. Relaxing the ACID guarantees leads to
the eventual consistency model, meaning that in the absence



of updates strict consistency will be reached eventually [12].
Here, we focus on eventual consistency metrics which provide
more fine-grained quality assessment than the ACID model.

There are two main perspectives on consistency in itself:
a client-side perspective and a system-side (or data-centric)
perspective. The first depends on the behavior observable
by the client while the latter describes the interna of a
storage system. For most use cases a client-side perspective
suffices as this is the consistency level actually experienced by
applications using the storage system. A system-centric view
on consistency, in contrast, is a the means to generate the
client-side output.

Vogels [13] names several subforms of consistency be-
yond strict and eventual consistency when taking a client-
side perspective. One prominent example is monotonic read
consistency (MRC) where a storage system guarantees never
to return a version older than n once this version has been
returned at least once. Other examples are monotonic write
consistency (MWC) or read your writes consistency (RYWC).
Bermbach and Tai [14] suggest an approach to experimentally
quantify eventual consistency via the length of the inconsis-
tency window, a concept defined as t-visibility by [15]. They
also count violations of monotonic read consistency. A similar
approach for measuring staleness after batch inserts has been
implemented in YCSB++ [16].

III. CLOUD DATABASE SERVICE QUALITY METRICS

Based on the quality metrics discussed in the literature, we
develop a comprehensive quality model for cloud database ser-
vice systems that comprises of multiple fine-grained runtime
quality of service metrics.

A. Performance

Performance is typically measured in terms of throughput
and request response time. The performance measurement
samples are aggregated into estimators of certain parameters
of the performance distribution. These estimators are the
performance metrics.

1) Average Throughput: A throughput measurement mi =
ops is the number of operations ops over a given time period
ti. Based on multiple throughput measurements, throughput
metrics can be formulated for each type of request, such as
read or write requests. Typically, users are interested in average
throughput measured in operations per second, T = m̄ =∑n

i mi/
∑n

i ti.
2) Average and Upper-Percentile Response Time: In the

context of our work, a response time measurement mi =
treq−tresp is defined as the time lag between issuing a service
request and receiving a successful response. The success of a
response is indicated by the response message status code,
such as “HTTP 200”. Based on multiple measurements, re-
sponse time metrics can be formulated for each type of request,
such as read or write requests. Two metrics are of particular
interest, namely the average response time of n measurements,
RT = m̄ =

∑n
i mi/n, and the upper-percentile response time

RTp = F−1(p) with F−1 as the inverse cumulative response

time distribution function. Typical values are p = 95% or
p = 99%.

3) Elastic Scalability: Elasticity is defined via both speed
and performance impact of adding new resources into a cloud
database service system, and removing resources from a sys-
tem, respectively. The objective is to add or remove servers as
fast as possible without reducing performance and availability
metrics below a given level. We later show experimental
results where we measured the impact of increasing throughput
on response time variability by example of two different
scaling strategies.

Scalability is defined by the increase in throughput, and the
decrease in response time, respectively, that can be gained by
adding more server resources to a database system, as well as
the speed of adding new servers to a cluster. On the other hand,
it is also important to measure the speed and performance
impact of removing servers from a database system if the
capacity is not needed any more because workloads have
decreased.

The basic metrics for measuring elastic scalability are scale-
up and speed-up. Scale-up defines the throughput-processing
capacity gained by increasing the number of servers by α
percent, i.e., T (αs)/T (s), where s is the number of servers
and T (·) is the throughput function. Speed-up similarly defines
the decrease of response time that can be gained if servers are
added but workloads remain constant, i.e. RT (s)/RT (αs).

B. Consistency

We propose the following metrics to measure degrees of
consistency:

• Staleness: This is the time window between the last
read of version n and the start of the write of version
n+ 1 for most storage systems. If the system guarantees
transaction isolation, this value decreases by the write
latency for version n + 1. Given a distribution of these
inconsistency windows, one can also calculate a curve
describing the probability of stale reads over time which
is just a different representation of the same data.

• Violations of MRC: This the likelihood of reading a
version n followed by reading an older version some time
later.

• Violations of MWC: The likelihood of two consecutive
writes by the same client being serialized in reverse
chronological order.

• Violations of RYWC: The likelihood of a client writing
a version n and the same client reading an older version
some time later.

C. Dependability

Dependability encompasses both reliability and availability.
A typical reliability metric is the expected failure rate, i.e.,
the expected number of failures in a given time period.
Reliability depends on a variety of factors, such as hardware,
software, and human failures, that cannot be measured with
our framework. Instead, we assume that empirical failure data
is provided as an input into the framework.
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Fig. 1. Experiment-based Runtime Quality Measurement Framework.

Availability is the ratio between uptime and uptime +
downtime. In other words, availability can be measured as
the ratio between successful requests due to unavailability of
service and the number of all requests. Given a failure rate,
availability metrics are related to failure detection and recovery
time measurements for different systems and failure scenarios.
Usually, availability is defined as the ratio MTTF

MTTF+MTTR
where MTTF denotes the mean time to failure and MTTR
the mean time to recovery.

IV. QUALITY MEASUREMENT FRAMEWORK

The quality measurement framework manages the setup of
cloud database software on top of virtual servers in a compute
cloud (figure 1).

A. Architecture

The Infrastructure Manager provisions virtual servers that
can be placed in different geographic regions. The servers are
then configured by the Configuration Manager. Thereby, we
have a convenient automated mechanism to set up a cloud
database service system when we need it – and an economic
mechanism to decommission the system when we do not need
it anymore.

The benchmarking framework is based on the open source
tools Yahoo! Cloud Serving Benchmark (YCSB) and YCSB++
[5], [16]. The Workload Executors are deployed and can also
be placed in different geographic regions. Workloads are di-
vided into multiple phases which allow testing complex work-
load scenarios. The abstract workload model is translated into
workload instances that are executed by a specific database
client. Our contribution is the integration of cloud database
service system setup and benchmarking. The benchmarking
framework can also be allocated and deallocated on-demand.

The framework provides a Cluster Configuration Manager
that can scale the database system up by provisioning new
virtual servers in the compute cloud, configuring the servers,

and bootstrapping the servers as new nodes into the cloud
database service system. The Cluster Configuration Manager
can also scale the system down by decommissioning nodes,
waiting until the nodes have been removed from the cluster,
and then terminating the corresponding virtual servers in the
compute cloud. The Node Configuration Manager is used to
apply server-level configurations, such as thread-pool sizes,
memory allocation, etc. We envision a Failure Executor and
Recovery Executor to automatically test complex failure and
recovery scenarios. These parts of the framework have not
been implemented, yet.

The quality data is measured from two perspectives, the
client perspective, such as the response time of client requests,
and the system perspective, by integrating monitoring tools as
demonstrated with [16].

B. YCSB DB Client Adapters

We developed additional YCSB adapters for Amazon Sim-
ple Storage Service (S3), SimpleDB, and DynamoDB. Table V
show the data model mapping between the generic YCSB data
model and the respective database client implementations, as
well as the mapping between generic Read, Write, and Scan
requests and the respective database client implementations.

1) Simple Storage Service: Simple Storage Service (S3) is
not perfectly suitable for the type of workload generated by
YCSB. All YCSB operations work with data records. Each
record consists of a number of fields (by default 10) of a
certain length (by default 100 bytes). In the S3 adapter, we
map the generic record data type into a file with field name-
value pairs. For each insert operation, a new file is generated
and uploaded to S3 as an S3Object, and each read operation
downloads a file and writes the requested fields to a buffer
stream.

2) SimpleDB: SimpleDB is better suited for mapping the
generic YCSB data schema than S3. Similar to DynamoDB
and Cassandra, SimpleDB saves each record in a row with a



flexible number of columns. We found that the sequential exe-
cution of SimpleDB requests results in low throughput because
the client becomes a bottleneck. Therefore, we implemented
the client to make asynchronous requests and calculate latency
upon receiving the callback response.

3) DynamoDB: For all Amazon storage service bench-
marks we adjusted the YCSB record field length property to
90 bytes instead of 100 bytes. The reason is that DynamoDB
provides a given amount of “Provisioned Throughput” and
calculates this capacity based on items that are less than
1KB in size. If the item size is equal or close to 1KB, we
would need to provision twice the throughput. Similar to
the SimpleDB client, DynamoDB’s Java client can become
a bottleneck if operations are not executed asynchronously.

4) Cassandra: The Cassandra DB client maps the YCSB
table schema to a column family in a keyspace. Records are
stored as rows with a flexible number of columns where each
column contains the content of one field. With the Cassandra
0.7 client, single records are accessed by a slice query with
a predicate that lists the fields that are requested. A write
operation (insert or update) maps to a batch mutate requests
that writes multiple columns in a single row. The default
replication factor is 1, and the read and write consistency
levels are ONE, as well; i.e. no replication is used and a single
acknowledgement is required per operation. We extended the
existing Cassandra client implementation to vary the consis-
tency level with each benchmark run.

V. EXPERIMENTS

In this section, we discuss some representative results that
were gained with the quality measurement framework by
example of Cassandra clusters on top of Amazon EC2 servers.
Cassandra [17] is a Peer-to-Peer system with replication and
distribution techniques inspired by Amazon’s Dynamo key-
value store [2] and a column-oriented [18] data model.

A. Analysis of the Cassandra Database System

We focus on the five decision parameters stated in table II:
“number of servers”, “server type”, “replication factor”, “Read
consistency level”, and “Write consistency level”.

1) Cassandra Scalability: We evaluate two different scaling
strategies (table III), vertical and horizontal scaling. The
initial setup is a Cassandra cluster on top of four m1.large1

Amazon EC2 instances. One m1.large instance currently costs
$0.36 per hour, plus additional charges for traffic, etc. The
cluster is pre-filled with 40 GB synthetic data. With the
vertical scaling strategy, each of the 4 Cassandra nodes is up-
graded to m1.xlarge2 instances that offer twice the resources.
Horizontal scaling, on the other side, doubles the number
from four m1.large instances to eight m1.large instances. We
benchmark the two clusters that represent the two different

1Each m1.large instance is equipped with 7.5 GB memory, 850 GB disk
storage, and 4 EC2 Compute Units (equivalent to four 1GHz Opteron 2007
cores).

2Each m1.xlarge instance is equipped with 15 GB memory, 1700 GB disk
storage, and 8 ECU, for $0.72 per hour.

Parameter Range
#servers n ∈ {3, . . . , 16}
EC2 server type t ∈ {m1.small,m1.large,m1.xlarge}
Replication factor N ∈ {1, . . . , 5}
Read consistency R ∈ {ONE,QUORUM,ALL}
Write consistency W ∈ {ONE,QUORUM,ALL}
Objective fi ∈ {Throughput,Read average,

Write average,Read 95th,Write 95th,
Inconsistency,Cost}

TABLE II
RANGES OF THE DECISION VARIABLES AND OBJECTIVES.

Param Vertical Scaling Horizontal Scaling
n 4 8
t m1.xlarge m1.large
N 1 1
R ONE ONE
W ONE ONE
f1 Throughput Throughput
f2 Avg. Latency Avg. Latency
f3 99-perc. Latency 99-perc. Latency

TABLE III
EXPERIMENT DESIGN FOR SCALABILITY TESTS.

Param Factorial Experiment Design
n 3, ..., 16
t m1.small
N 1, ..., 5
R {ONE,QUORUM,ALL}
W {ONE,QUORUM,ALL}
f1 Throughput
f2 Avg. Latency
f3 99-perc. Latency

TABLE IV
EXPERIMENT DESIGN FOR REPLICATION SETTING TESTS.

YCSB DB Table Record Field
S3 Bucket File, S3Object Text line
SimpleDB Domain Replaceable-

Item
Replaceable-
Attribute

DynamoDB Table Item Attribute-Value
Cassandra Keyspace,

Column-
Family

Row Column

YCSB DB Read Write Scan
S3 Get Object Put Object List Objects
SimpleDB Select Put Attributes Select
DynamoDB Get Item Put Item Scan
Cassandra Get Slice Batch Mutate Get Range Slices

TABLE V
YCSB DB CLIENT DATA MODEL AND OPERATION MAPPING.

Thr Wr Av Wr 95 R Av R 95
C 89 ops/s 101 ms 138 ms 35 ms 38 ms

EC 95 ops/s 88 ms 112 ms 37 ms 36 ms

TABLE VI
PERFORMANCE VALUES FOR SIMPLEDB.

Thr Wr Av Wr 95 R Av R 95
C 96 ops/s 44 ms 23 ms 44 ms 22 ms

EC 99 ops/s 16 ms 17 ms 15 ms 15 ms

TABLE VII
PERFORMANCE VALUES FOR DYNAMODB.



Fig. 2. Horizontally (H) vs. vertically (V) scaled Cassandra 1.0 cluster.

(a) n=16, N=5 (b) n=16, N=3

Fig. 3. Average Read latencies subject to consistency level and replication factor. N is the Cassandra replication factor and n is the number of m1.small
EC2 instances. The Write and Read consistency level numbers refer to the number of replicas that must acknowledge a client request synchronously.

(a) Relative Frequencies of Inconsistency Windows (b) Probability of Reading non-Stale Data over Time

Fig. 4. Distribution of Cassandra’s Inconsistency Windows (without Outliers).



scaling strategies with a workload with a zipfian request
distribution where 80% are read and 20% are update requests.
The initial cluster with four m1.large instances can process
up to 1,200 ops/sec. Figure 2 shows that the cluster can
be vertically scaled to ca. 4,000 ops/sec after which the
update response time dramatically increases whereas it can be
horizontally scaled to more than 5,000 ops/sec. The horizontal
scale-up strategy amounts to a 4× increase in throughput
processing capacity, i.e. roughly T (8, large)/T (4, large) =
5, 000/1, 200. The vertical scale-up, on the other side, achieves
only a 3.3× increase of the original throughput, i.e. roughly
T (4, xlarge)/T (4, large) = 4, 000/1, 200.

Fig. 5. Response surface of maximum throughput of a Cassandra 0.7 cluster
depending on replication factor N and #nodes (m1.small EC2 instances), and
consistency level ONE, given a YCSB workload with 80% read and 20%
update requests with a zipfian request distribution.

The boxplots in figure 2 show that the response time vari-
ance of the vertically scaled cluster tends to be much higher
than of the horizontally scaled cluster (except for average read
response time). We suspect that this effect stems from more
imbalanced load distribution in the vertically scaled cluster,
however, we have not collected monitoring data to evaluate
this hypothesis, yet.

2) Cassandra Replication Settings: With another experi-
ment design (table IV), we measure average throughput as well
as average and upper percentile latency of a Cassandra cluster,
depending on replication factor, consistency levels, and cluster
size. The replication factor N specifies the number of data
copies and thus increases service availability in the event of
server failures or network partitions. Increasing the replication
factor, however, can affect performance.

Experiments with a workload model that specifies 80% read
and 20% update requests shows that this is even the case
for moderately write-intense workloads with weak consistency
guarantees. The data in figure 5 shows that, if the Cassandra
cluster is small, increasing the replication factor from 1 to 3
affects throughput negatively, however, increasing it from 3
to 5, has a slight positive effect. However, if we scale the

cluster to larger sizes, increasing the replication factor has a
significant negative effect on throughput.

Figure 3 shows that, in the case of a very large replication
factor of N = 5, the Read latency is optimal for a Read and
Write QUORUM consistency level configuration. In the case
of N = 3, the optimal configuration is ALL. N = 5 with
QUORUM level and N = 3 ALL level, respectively, both
refer to 3 replicas that must synchronously acknowledge a
client request.

3) Consistency Benchmarking: Using the approach de-
scribed in [14], we deployed 3 large EC2 instances distributed
in the region eu-west (one per availability zone) running Cas-
sandra 0.6.5, additionally we evenly distributed 12 readers and
one writer over the same region. All requests were issued at
consistency level ONE over a period of 24 hours. Each reader
issued a request in 1ms intervals, every 10 seconds the writer
issued an update. Our results show a geometric distribution
of inconsistency windows with more than 98% of all writes
showing less than 40ms of inconsistency. This result is close
to the accuracy limitations of the Network Time Protocol
which is an unresolved issue of our benchmarking approach.
Monotonic read consistency was violated in about 0.00057%
of all test runs. Figure 4 shows the geometric distribution in
the left part and the probability of reading fresh, i.e., non-stale,
data on the right. It can easily be seen that actual inconsistency
windows are very small in a situation without failures. In
contrast to experiments with Amazon S3 [14], though, our
experiments were run on an isolated cluster running our
software stack only. But when creating additional load on the
system, the behavior considerable worsens (though still less
than S3). Currently, we are analyzing the relation between
load and inconsistency window as our original Cassandra
benchmark with additional load overloaded the cluster.

B. Analysis of Amazon Database Services

Since both DynamoDB and Cassandra implement aspects
of the original Dynamo [2] design, we are interested in
comparing quality between the managed database service
DynamoDB and our EC2-based Cassandra setups. We addi-
tionally benchmark SimpleDB in comparison to DynamoDB.
For all benchmarks, we use the same benchmarking setup and
workload as for the Cassandra experiments.

1) SimpleDB: We measure a bad maximum throughput of
approximately 400 ops/s which is less than the throughput
achieved with a single Cassandra node. The average Sime-
pleDB write latency rockets to over 4700 ms if we try to
achieve higher throughput numbers and only the average read
latency comes close to Cassandra’s values.

Consequently, we reduce the throughput target to 100 ops/s.
We then compare the two consistency levels in SimpleDB,
Consistent Read (C) and Eventually Consistent Read (EC),
shown in table VI. The read latencies are not affected by the
consistency level and have a very low spread between the
average and 95th percentile values. To our surprise, the write
latencies increase by 15-20% when choosing the Consistent
Read option.



Similar experiments with SimpleDB, described in [19],
report lower latency values for a workload with maximum
throughput of up to 1,200 ops/s which could be an indication
that our benchmarking client might be a bottleneck in the
setup. On the other side, our data does not show request
failures whereas the SimpleDB experiments in [19] report
up to 50% service unavailability failures (HTTP return code
503) for the high-throughput workloads. The authors observe
no significant differences between the latencies for Consistent
Read and Eventual Consistent Read requests and suggest not
to use the Eventual Consistent option because there were no
performance improvements that would reward for the 30%
chance to read stale data with a staleness of up to 500 ms.

2) DynamoDB: DynamoDB offers a configuration param-
eter “Provisioned Throughput” per table. The configuration
parameter allows customers to specify the read and write
operation throughput they currently need and DynamoDB
accordingly allocates or deallocates resource capacity. This
online capacity management is executed in a way so that low-
latency performance can be guaranteed even for upper per-
centiles of the request distribution. The capacity is calculated
based on two metrics: the item size and, for read operations,
the read consistency level. One write capacity unit is needed
to provide one write operation per second. One read capacity
unit is needed to provide one Consistent Read operation, or
two Eventually Consistent Read operations, respectively. In
other words, Eventually Consistent Reads are “half the price”
of Consistent Reads.

Our experiments show a similar throughput limit as in
SimpleDB – even if “Provisioned Throughput” is set to large
values of 1,000 write and 1,000 read capacity units. Maximum
throughput is again low (430 ops/s), write latencies reach
1,300 ms and read latencies 600 ms which would be a 2,000%
and 1,200% increase in comparison to Cassandra, respectively.

Again, we limit throughput to 100 ops/s and compare the
two consistency level options (table VII). Unlike SimpleDB,
DynamoDB balances read and write latency very well. This
results look reasonable, considering that DynamoDB uses solid
state drive hardware.

Consistent Reads turn out to be expensive: average latency
increases by roughly 200% compared to Eventually Consistent
Reads. We also observe that Eventually Consistent Reads have
similar values for 95th percentile and average latency.

VI. DISCUSSION

A. Interpretation of Experimental Results

Interestingly, in our experiments with both SimpleDB and
DynamoDB we are not able to scale throughput beyond three-
digit numbers – which is considerably lower than the through-
put that we achieved with our Cassandra clusters. The related
work [19] suggests that this might in fact be a limitation of the
current SimpleDB offering. Moreover, at the time of running
the experiments, DynamoDB still is in a public beta test phase
which might explain why we cannot scale DynamoDB to the
provisioned throughput. Therefore, a meaningful comparison
between Cassandra and Amazon’s database services is not

possible since the EC2-based Cassandra cluster easily out-
performs both SimpleDB and DynamoDB.

B. Lessons Learned

During our research work, we learned that automating the
setup and configuration of the system under test requires
a reliable configuration management solution. The configu-
ration management solution used in our research prototype
implementation still needs further improvement. Moreover, we
acknowledge that the implementation of the benchmarking
clients has a significant impact on the test methodology and
the test results and must therefore be carefully reviewed.

We are working on improvements of our setup to more
efficiently gather measurement data for a broader variety of
systems. We are also extending the benchmarking framework
to measure additional objective metrics, such as availability
and reliability in the face of server failures.

C. Potential Use of Experimental Results

1) Graceful degradation: A common fault-tolerance strat-
egy of Web applications is the degradation of features or
quality in the event of a failure [20]. There are two basic
types of stop-failures that can harm cloud service availability:
server failures and network partitions. A temporary server
failure renders data unavailable during the time to recovery.
Even worse, a permanent server failure leads to data loss.
Fortunately, availability and durability can be increased by
replicating data across multiple failure-isolated servers. During
the failure of one or more servers, the remaining replica
servers pitch in – given that they are not overwhelmed by the
additional workload. Unfortunately, replication for availability
can harm performance and elastic scalability. The impact of
replication as well as the impact of recovery mechanisms is
therefore addressed by our quality measurement framework.

Data migration is another data management mechanism that
can lead to degraded performance and availability. Online data
migration is necessary when data needs to be re-distributed
in a running database system. This is usually the case when
new servers join or leave a database system and data must
be migrated to the joining, or from the leaving servers,
respectively. Thus, the basic operations of scaling a system
temporarily affect performance. If data cannot be re-distributed
without taking the system down, availability is reduced by
scheduled downtime. Another case of data migration is data
load balancing to resolve imbalanced data distribution in a
database system.

We are working to extend our framework in support of
the analysis of the performance and availability impact of
failures along with an analysis of strategies to reduce these
negative side-effects. Moreover, the framework should provide
more advanced features to analyze the elastic scalability of a
database system with focus on two metrics: the speed and the
performance impact of online data migration.

2) Quality optimization tradeoffs: We argue that fine-
grained metrics are better for controlling the quality of a
system than coarse-grained metrics. For example, the binary



QoS levels {consistent, inconsistent} are less expressive than
QoS levels that specify the maximum allowed average t-
visibility (i.e., staleness in terms of time [15]) on a continuous
scale of milliseconds. The consistency of a service can be
optimized by adapting consistency control mechanisms, such
as Quorum-based consistency protocols.

If qualities are in conflict with one another, tradeoff deci-
sions must be made during optimization of one of the qualities.
Fine-grained quality metrics allow the definition of more
expressive tradeoff decisions between conflicting qualities. For
example, a quality control system could trade marginal units
of read-after-write inconsistency for marginal units of harvest.

VII. CONCLUSION

We present a runtime quality measurement and analysis
framework for cloud database service systems. The framework
allows the automated distributed setup of cloud database
software on elastic compute cloud infrastructure along with
the automated setup of an experiment framework to efficiently
conduct performance benchmarks. The framework can be used
for the analysis of scaling strategies, such as vertical vs.
horizontal scaling, for the analysis of conflicting objectives,
such as consistency vs. performance vs. availability.

We compare our results with performance benchmarks
of the managed database services Amazon SimpleDB and
DynamoDB. Surprisingly, in our experiments, the managed
services do not scale beyond low throughput numbers of 400
ops/sec whereas even small Cassandra clusters can process
multiple thousand ops/sec. We are working on extensions of
our framework for the analysis of a broader spectrum of
NoSQL database systems, including HBase and MongoDB.
Moreover, we are working on a framework extension for the
analysis of fault tolerance mechanisms of cloud-based NoSQL
database systems.

We envision our framework as a basis for advanced database
management and optimization decision support mechanisms,
including graceful quality degradation decisions and quality
tradeoff decisions.
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