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Abstract— In this paper, we present a method for repre-
senting and re-targeting manipulations for object adjustment
before final grasping. Such pre-grasp manipulation actions bring
objects into better configurations for grasping through e.g.
object rotation or object sliding. For this purpose, we propose
a scaling-invariant and rotation-invariant representation of the
hand poses, which is then automatically adapted to the target
object to perform the selected pre-grasp manipulations. We
show that pre-grasp strategies such as sliding manipulations not
only enable more robust object grasping, but also significantly
increase the success rate for grasping.

I. INTRODUCTION

In recent years, many humanoid robots like ARMAR [1],
Justin [2], HRP2 [3], Domo [4] and Twendy-One [5] have
been designed to assist humans. The major tasks people
expect of robots are helping in a kitchen environment,
cleaning a room, and moving heavy objects [6]. For all these
tasks, robust fetching of various objects from a surface is a
fundamental subtask. In this paper, we propose a pre-grasp
manipulation strategy to allow changing objects to a better
configuration before final grasping. This strategy is inspired
by human-object interaction strategies observed in grasping
tasks. Examples include sliding flat objects such as a credit
card to a table edge to grasp it, pushing a heavy box near
the body mass center for easier lifting, or rotating a handled
object [7].

Motivated by the study about human pre-grasp strategies
based on preparatory object rotation introduced by Chang et
al. in [7], we conducted an informal video survey to investi-
gate possible object-based patterns in everyday human-object
interaction. In our study, participants grasped and moved
household objects such as a stapler, books, and CDs that
were scattered on a table. We observed that people tend to
pre-manipulate objects, e.g. slide objects on the table if they
areout of reach or inconvenient to grasp. Furthermore, they
used similar hand poses for pre-grasp manipulation when
grasping objects of similar shapes.
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NASA Harriet G. Jenkins Pre-Doctoral Fellowship.
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Fig. 1. Overview of the pre-grasp strategy, where an object is slid on the
table before the final grasp.

Based on these observed patterns, we propose a data-
driven method which enables automatic synthesis of pre-
grasp manipulation strategies for various objects. To facil-
itate manipulation planning, we propose to learn and store
preshapes and pre-grasp manipulations according to object
categories. A preshape in this context is a data structure
which combines starting hand poses and configurations, con-
straints on the related pre-grasp manipulation actions as well
as suitable final grasp-types. Pre-grasp manipulation actions,
such as sliding, are annotated with context information in our
pre-grasp manipulation data structure which contains object
and robot constraints for manipulation, and a final region
within which the action should relocate the object.

Current methods [8] [9] [10] for planning object fetching
search direct grasp solutions based on a known object
pose. Our pre-grasp strategy augments such methods by a
preliminary step which reconfigures the object pose through
a suitable pre-grasp manipulation actions. This strategy not
only results in higher success rates for finding stable grasp
solutions, but it also increases the final grasp stability for
grasping. Also, even when a direct grasp solution is available,
our approach enables faster online planning based on the
focused search from context knowledge.

II. RELATED WORK

Our approach to use human manipulation strategies to plan
object grasping is inspired by the work of Chang et al. [7],
[11], where they present an augmented grasp strategy based
on pre-grasp rotation for objects with handles (such as a
cooking pan) to increase the success rate for finding stable
lifting grasps.
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Fig. 2. The proposed pre-grasp strategy architecture with the four phases: “Preshape Starting Pose Computation, Pre-grasp Adaptation and Evaluation,
Pre-grasp Manipulation, Final Grasp” embedded in the grasp planning context.

Our presented pre-grasp strategy builds upon multiple con-
cepts of motion planning. One necessary feature for the strat-
egy is to determine if specific hand poses (position and orien-
tation of the palm) and configuration (finger joint values) are
reachable or not. Many humanoid robots have at least 7-DoF
arms which leads to redundant inverse kinematics problems
to achieve hand poses. This is an extensively studied topic
in the computer graphics and robotics community [13]–
[15]. These approaches enable computation of manipulator
configurations for grasping, sliding and rotating manipula-
tions. For a complete motion, a path between the initial
pose and the calculated one has to be planned. Additional
constraints for such a path are obstacle avoidance and joint
limitations. Latombe [16] discusses traditional approaches
to this problem and Rapidly-exploring Random Tree (RRT)
methods by Lavalle [17]. For pre-grasp manipulation, there
are many methods to adjust the object on the support surface.
Pushing and sliding, which are used in this paper, are
discussed in [18]–[20] and reorientation was used in [7], [12],
[33] to successfully grasp hard-to-reach objects. Toppling as
well as tumbling presented by Lynch et al. [21] are also
possible pre-grasp manipulations.

The key problem for fetching objects from a surface is
finding a stable grasp to lift the object. Thus, many past ap-
proaches focused on automatically generating hand poses for
stable grasping. Saxena et al. [22] proposed a method based
on 2D image analysis. The majority of grasping research
works with 3D object models. Goldfeder et al. [23] investi-
gated grasp pose adaptation based on the decomposition of
the object trimesh into superquadrics. Using template grasp
poses for grasping in general was proposed by Pollard [24],
Miller et al. [8] and Hsiao [25]. Berenson et al. [9] proposed
a method to precompute a set of possible grasps offline
for later online evaluation against environmental constraints.
Przybylski et al. suggested in [10] to use the medial axis
to reduce the number of possible grasp candidates. Finding
model-based analytical grasps is discussed by Bicchi and
Kumar in [26]. For evaluating the stability of a possible
lifting grasp, Ferrari and Canny [27] proposed the force
closure metric, which measures the force exerted on the
object at the contact points. More recent research about grasp
quality is presented by Miller and Allen [28].

III. PRE-GRASP STRATEGY

We present a data-driven strategy which is designed to au-
tomatically perform pre-grasp manipulation actions to fetch
an object from a surface. That is, given an object in an initial
pose on a surface, our method plans a solution for a robot to
adjust the object to a final pose, within a distinct final region,
using a suitable pre-grasp manipulation strategy. This data-
driven approach is based on context knowledge consisting of
look-up structures for object categories, hand configurations
and poses, discrete actions, constraints, goal regions, and
grasp-types which are described in the following sections.

A. Representations

At the high level, the context knowledge is organized
by object categories O. For each object category, there are
multiple entries for different pre-grasp manipulation contexts
which allow successful pre-grasp manipulation for a given
object within this category with a high probability. The
context per object category consists of two parts, a set
of preshapes S and a set of pre-grasp manipulation data
structures M.

O= (S,M) (1)

The next sections describe the preshape S and pre-grasp
manipulation M data structure.

1) Preshape: The idea behind the preshape data structure
is, that a hand configuration in a distinct pose relative to
an object, used for pre-grasp manipulation actions, can be
efficiently adapted to other objects within the same category
to perform the similar actions. Hence, only a small set of
example preshapes is needed to be able to find suitable hand
configuration and poses to perform pre-grasp manipulation
actions for an object. In that context, we introduce the
preshape data structure S as:

S= (c,P,C,G,M) (2)

Every preshape provides a hand configuration c, which is
defined by the joint values of the given robot hand. A
preshape also supplies a set of starting poses P, which
describe the hand position and orientation. This set P should



be invariant in terms of rotation and scaling for objects within
the same category. Therefore, we propose to compute P at
runtime to provide appropriate starting poses p with respect
to a given object. Hence, different preshape definitions are
likely for different or even the same pre-grasp manipulation
actions. To be able to perform the pre-grasp manipulations
M possible for a preshape, the hand configuration ca and
poses Pa adapted to the object have to satisfy constraints
C, for example finger contact with the object or mechanical
joint limits. Additionally, the selection of a distinct preshape
permits the selection of subset of grasp-types G available by
the robot platform which are reasonable for final grasping.

2) Pre-grasp manipulation: The goal for pre-grasp ma-
nipulation strategy is to relocate an object into a final region
where the object is more likely to be successfully grasped.
For that purpose, we propose the pre-grasp manipulation M
data structure:

M= (a,C,F) (3)

A pre-grasp manipulation is defined by an action a, which
in this context may be for example toppling, tumbling,
rotating, pushing, and sliding. In general an action a has
to satisfy constraints C during manipulation, for example
constant object contact, force limitations to the robot joints
as well as to the object surface, or object orientations
like ensuring that a cup is not spilling. Additionally for
particular grasp-types G and object categories O there are
constraints C for the object within the final region F such as
whether the handle of a pan is reachable. The final region F
is defined by the intersection of the region in which grasp-
types G, provided by the selected preshape S, are feasible
in the current robot workspace, the surface region, and the
region an action is likely to succeed to relocate the object to.

To summarize, we introduced representations for our
proposed data-driven pre-grasp strategy to readjust an
object on a surface prior to grasping, which allows us to
select preshapes S and pre-grasp manipulations M based
on the object category O. These data structures build the
foundation for general usage of pre-grasp strategies to
increase the success rate of stable grasp acquisition.

3) Preshape and pre-grasp manipulation for sliding:
The introduced representation for pre-grasp strategies is
capable of providing solutions for different kinds of pre-
grasp manipulations. Here, we demonstrate the benefit based
on sliding pre-grasp manipulation and the corresponding
preshapes optimized for this task.

We informally observed in the video survey mentioned in
Section I that preshapes for sliding pre-grasp manipulation
have similar initial offsets to the object surface and similar
distances to object edges. Hence, a set of starting poses P
can be efficiently determined for each object within a certain
category based on the following quantities in the object
coordinate system, illustrated in Fig. 3:
• The initial position xs on the object surface,
• the offset f of the hand to the object surface,
• the dimension d of the original object’s bounding box,

X

2d1

2d0

s

f
y

r

22d O
Xs

f
y

r

n m

O

Original Object Example Object In The
Same Category

2d1

2d0

22d

Fig. 3. Representation of stored information in the preshape S structure.
These components allow for automatic determination of the starting hand
poses relative to the object. The left side shows the original object from the
preshape example. The right side shows one possible starting pose made
with absolute distance m and relative distance n for the two visible sides.

• and the hand orientation stored by the roll axis r and
yaw axis y

The separation of the starting poses into the three parts,
surface position, free-space offset, and orientation, ensure
scale-invariant and rotation-invariant adaptation to objects of
the same object category O as described in Section III-C.
The assigned pre-grasp manipulation M is always sliding
manipulation. Constraints C in our context are fingertip
contact with the object and collision free arm configuration
for the pose. Every preshape has a set of grasp-types G which
are reasonable based on the preshape knowledge, for example
a large object is preferably grasped with two hands if it is
reachable for both hands.

Sliding is the pre-grasp manipulation action a used in
this paper. Constraints C for this M are that the fingers
are in contact during the whole sliding manipulation, and
continuous arm configurations for the whole path can be
found. Object pose constraints are not considered due to the
fact that no special grasps for objects such as handled ones
are available.

B. Architecture

Based on the presented data structures we propose a data
driven framework which performs pre-grasp strategies to
grasp an object located on a surface. The general procedure
is visualized in Fig. 2. The method takes an object category
O described in detail in Section III-A as input which can
be gathered through a classification step to find the best
matching O for a given object.

At first, the pre-grasp strategy computes the set of starting
poses P for the preshapes affiliated with O. This step
enables starting pose computation that is invariant to object
scaling and rotation as demonstrated by our sliding preshape
representation.

In the second step kinematic template preshapes of O are
adapted to the object surface. The adapted preshapes are
evaluated with a rating function such as Qp(c,p,q,F,C) to
find the best adapted preshape in terms of Qp which then is
propagated to the pre-grasp manipulation phase. The rating



function Qp described in Section IV-B checks finger contact
with the object, the arm pose, the size of the final region F ,
and the compliance with constraints.

The next step performs a corresponding pre-grasp ma-
nipulation M to the best rated S. A successful pre-grasp
manipulation plan is achieved if the object is within the final
region F satisfying the constraints C. If no successful plan
is found the best manipulation regarding Qm(p f ,F,C,g) is
performed and the search is restarted at the previous step. Qm
described in Section IV-B determines which manipulation
will be performed based on the object pose, the distance
to the final region, the observed constraints, and the grasp
success.

Finally, the grasp-types G usable for a object pose p f are
selected and adapted to the object. If no successful solution
respecting force closure metric can be found, the previous
step is repeated to manipulate the object to another location.
If no grasp solution can be found for a certain amount
of trials another pre-grasp manipulation available by the
adapted preshape is chosen to successful find a final grasp.

In the following Sections III-C to III-F we describe the four
individual parts of the proposed pre-grasp strategy: start
pose computation, pose adaptation, pre-grasp manipulation,
and final grasping.

C. Preshape Starting Pose Computation

As described in Section III-A every preshape has to have
the ability to serve a set of starting poses P. We present in
this paper an efficient way to provide P for sliding pre-grasp
manipulation based on the preshape optimized for sliding
introduced in Section III-A. In the remainder of this section
we refer to this distinct preshape.

To regain the starting poses P we divided the storage into
three parts. Only the first part, surface position xs generates
a set of points. For every surface point an offset f is added
and the orientation of the hand is set based on the roll
axis r and yaw axis y. The latter two ensure that the hand
orientation is independent of the object rotation using a right-
handed coordinate convention, the orientation is additionally
generated correctly regardless if it is a right or left hand.
To generate starting poses regardless of the object pose we
transform the object coordinate system so that the robot
shoulder position is expressed by a positive vector.

In our implementation a preshape for sliding pre-grasp
manipulation is always related to three object sides. We
determine the three sides with respect to the new object
coordinate system. There are two ways an example position
can be retargeted to a new object’s side: either the absolute
or the relative distance to the side can be preserved. The
absolute and relative distance either does not or does change
with scaling, respectively. The absolute relative distance can
be measured regarding to the positive or negative side of the
coordinate system, thus there are always two possibilities
for absolute distances. Hence, there is one starting position
if the relation to all three sides is relative. If the relation to
one side is measured absolute, there are 6 different solutions

one shown in Fig. 3, for every side two distances. For two
absolute distances there exist 12 possible solutions and if all
sides distances are retargeted as absolute 8 possible starting
positions are available. In total 27 starting positions xs are
necessary to express all possible relations of the surface point
with the object sides.

Thus, multiple surface positions are available, and this
overhead is acceptable in order to store a set which contains
a promising relative pose for a new object.

D. Preshape Adaptation and Evaluation

The second phase, preshape adaptation (Fig. 2), builds
upon the set of preshapes selected by the object category
and P determined by the previous step. The key aspect is
that preshapes enable efficient computation of hand con-
figurations suitable for pre-grasp manipulations considering
environmental, robot, and object constraints.

Hence, the goal of this phase is to find suitable hand
poses and configurations for the current object to perform
related pre-grasp manipulations. Several solutions for this
subtask are available in literature. For example Hsiao [25]
proposed a solution for template grasp adaptation for direct
grasping using starting position mapping on related objects.
Kim [29] suggested a grasp adaption algorithm based on
mapping grasp positions from an example to a new object.
Another grasp adaptation method from generic prototypes is
discussed by Pollard [24].

Since we need a grasp position for pre-grasp manipulation
and not only for direct grasping, we present a new adaptation
algorithm using additional context knowledge provided by
the preshape structure. The data representation provides
starting poses and corresponding hand configurations with
a high probability for successful adaptation. The starting
poses are checked for reachability to generate collision-free
arm IK solutions. Hence, we do not initially search for
starting preshapes, but we evaluate the preshapes which are
reachable. To evaluate them, we need to adapt the preshapes
to the current object. The adaptation process has two parts,
one for adapting hand configurations – changing the hand
configuration c to get fingertip contact, and another one
to relocate the hand if no solution regarding Qp can be
determined (Fig. 4).

Now we describe the fingertip contact calculation. Due to
the configuration c given by preshape S, the hand is already
in a promising configuration for contacts. Therefore, we
individually search for finger contact with the object surface
based on an iterative inverse kinematics approach for the
current finger chain. This approach prevents awkward hand
configurations because the initial finger configuration is used
if no contact solution can be found. This method is described
in detail in Fig. 4. Once the preshapes have been adapted to
the object, we then compare them to select the best adapted
preshape for the pre-grasp manipulation phase. The adapted
preshapes are scored by a rating function Qp(c,p,q,F,C)
regarding the pre-grasp manipulations they correspond to and
the best is propagated to the pre-grasp manipulation phase.



Move Hand Along 
Approcahing Direction 

Till Collision

Rate The Adapted
Con�guration With Q

Preshapes

A Adapted Preshape With 
Rating Q  > Threshold ExistspAdapted Preshapes

New Starting Poses

Find New 
Starting Poses

Adapt 
Preshapes

Find Surface Finger Tip
Contact Ponts

Calculate Inverse 
Finger Kinematic

For All Fingers

Yes

No

Move To New Pose 
Till Collision

Calculate New 
Starting Pose

Find Surface Finger Tip
Contact Ponts

Set Hand To Preshape
Start Con�guration c

Fig. 4. The left side of our proposed algorithm adapts a hand configuration
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enough rating Qp is available, the right side of the algorithm computes new
starting poses.

Although the initial hand pose p ∈ P is likely to be in a
promising spot for finding a successful solution with high
value of Qp, it may occur that no finger contacts can be
found. If no preshape is successfully adapted, a new P has
to be found to achieve successful solutions with respect to
Qp. In these cases, we use the original preshape configuration
c, and then we search for a new hand pose p based on the
closest surface points to the active finger tips. After the hand
is iteratively moved to the new pose, the process of finding
fingertip contact restarts (Fig. 4).

E. Pre-grasp Manipulation

Currently, the pre-grasp strategy has achieved the follow-
ing goals. A set of preshapes have been adapted to the object
and the best adapted preshape relative to a quality function
Qp has been selected. Only pre-grasp manipulations related
to the object category and adapted preshape are available at
this stage. In addition to that the adapted preshape has to
respect the constraints for the pre-grasp manipulation.

The goal of the pre-grasp manipulation phase is to find
a path such that the object is relocated to the final region
and respects the pose constraint of the selected preshape,
manipulation, and grasp. The kind of pre-grasp manipulation
used for readjusting the object location is specified within
the selected and adapted preshape S and the selected object
category O.

Pre-grasp strategies in general have two aspects in com-
mon. First, they use the benefit that the object rests on a
surface, such that it is often it is easier to adjust the object
pose than to grasp the object. Second, they solve the problem
of finding successful and stable grasps if the object is not
within a certain reachable area or pose by relocating the
object to more easier plan lifting grasps.

The general idea of this paper to provide a representation
that enables to use multiple pre-grasp manipulations such as

sliding manipulations proposed by Lynch et al. [20], rotating
manipulations discussed by Chang et al. [7], for a pre-grasp
strategy to adjust the object prior to grasping.

With completion of this phase, the object is located within
the final region and is satisfying the pose constraints, and
thus the grasping action can be planned more easily.

F. Final Grasp
The final grasp is planned once the pre-grasp manipulation

has successfully located the object within a final region F
respecting constraints C. Finding grasp candidates for an
object located in such a region has been well explored in
robotics and computer graphics. Literature such as [8] [9]
[10] [24] [25] about this topic was introduced in Section II.
If a successful grasp solution respecting force closure metric
is found the pre-grasp strategy is finished. But if no stable
solution can be found (Fig. 2), either the object has to be
relocated based on the previous step, or the manipulation
strategy has to be changed.

IV. IMPLEMENTATION

We implemented our framework as a plugin in OpenRAVE
[30] which provides collision checking, IK solutions and
RRT planning to our simulation. The RRT motion planner
is used to find a continuous motion between two distinct
hand configurations in a certain pose.

For the sliding preshapes and pre-grasp manipulation
the following assumptions are made. First, surface geometry
models are available for all objects. Object weight is
known a priori, and objects have an initial coordinate
system with a known upright axis indicating how it rests
on the surface. Additionally, our sliding implementation
does not support obstacles on the surface. Other pre-grasp
manipulation strategies as well as a more sophisticated
sliding implementation are envisioned.

A. Object Classification
Mapping an input feature vector, e.g. weight and dimen-

sion of a given object, to an output label, e.g. box or cylinder,
is a standard classification problem. There are many different
solutions to solve this problem, for example neural networks
[31] or support vector machines [32]. It is possible to use
offline, online, supervised or unsupervised learning in our
framework, which allows for flexible implementations.

In our implementation we use the dimensions, weight and
curvature as input vector for a multilayer neural network.
The dimensions and curvature are computed online based on
the object trimesh. This classification results in assigning an
object category. The classifier was trained offline with two
manually selected object examples for every object category.

The goal of the object classification is to select the best
matching object category for a given object so that the
proposed pre-grasp strategy can prepare the object pose for
final grasping. Also note that our method will not necessarily
fail in response to misclassification of objects, due to the
adaptation process that is described in Section III-D. The
object category is described in detail in Section III-A.



B. Rating Function

As introduced in Section III-D the adapted pre-
shapes are evaluated by the corresponding rating function
Qp(c,p,q,F,C). We propose a rating function which prefers
more finger contacts, a large final region size, as many
pre-grasp manipulations as possible, and unconstrained arm
solutions regarding joint limits:

Qp(c,p,q,F,C) = α1 ∑
n
i=1 bi +α2 size(F)+α3 sat(C)

+α4 ∑
a
i=1

(
(mini−qi)

2+(maxx−qi)
2

(mini−maxi)2

)−1
(4)

where n is the number of fingers, a the number of arm joints,
bi is a binary indicator expressing whether the finger i made
contact. The relative size of the final region F is determined
by size(F). The constraints C are checked to determine
if a related pre-grasp manipulation can be performed, for
example if the force on the object is sufficiently away from
the limit force. The joint limits are mini and maxi, the
current joint value is qi. The different parts of the equation
are weighted by αi.

A second rating function Qm introduced in Section III-E
is designed to determine the pose p f for unsuccessful
pre-grasp manipulation which is the best starting pose for a
new adaptation set.

Qm(p f ,F,C,g) = α1 d(p f ,F)+α2 d(p f ,C)+α2 g (5)

where the distance to the final region F is measured as well
as to object pose constraints. In addition if the object was
within the final region and not graspable determined by g,
the final region for this grasp-type has to be removed for
later trials.

C. Pre-grasp Manipulation

As mentioned in Section III-A sliding is the only pre-
grasp manipulation implemented for evaluation in this paper.
This is based on the observation within the video survey
mentioned in Section I where sliding manipulation has been
the most common pre-grasp manipulation strategy for the
given objects. For other pre-grasp strategies like pre-grasp
rotation we refer to the work of Chang et al. [7], [11], [33];
pre-grasp toppling and tumbling to Lynch at al. [21]; sliding
by Dogar et al. [34].

For a successful sliding manipulation we try to find a
continuous trajectory from the initial adapted preshape pose
to a manipulation end pose so that the object is within
the final region without losing the hand/object and the
object/surface contacts. For sliding manipulation we have
no pose constraint within the final region due to the fact
that the manipulating hand is already in contact with the
object during the whole manipulation. Due to the definition
of the final region (Section III-A) it is assumed that after
successful pre-grasp manipulation the object is more likely
to be graspable after successful pre-grasp manipulation.

When the hand is in contact with the object during sliding
pre-grasp manipulation, we require that the finger object

friction is high enough such that the object moves along with
the hand movement on the surface, which is assumed to be
true as long as contact between the finger and the object is
maintained.

D. Final Grasp

The benefit in our framework is that object knowledge
is already available through selected template grasps and,
more importantly, the object is in a better location for
grasping. Berenson et al. [9] propose a pre-computation of
possible grasp candidates sampling the object surface to
gather starting positions to adapt template grasp. Due to the
better location and provided template grasps based on object
knowledge given by the selected preshape S we sample the
object surface and adapt the provided template grasps to the
object surface with the algorithm described in Fig. 4.

After grasp candidates are found the stability has to be
determined. A stable solution in this context has to satisfy
the force-closure metric proposed by Ferrari et al. [27].

V. EXPERIMENTS AND RESULTS

We compared our method in simulation to a traditional
planner for direct object grasping. We evaluated the success
rate of finding a feasible object acquisition plan, and the
computation time.

A. Scenario

In the test scenario, there is a single table in front of
the robot. The robot is a bi-manual humanoid model from
OpenRAVE [30] with 7-DoF arms and 15-DoF hands (Fig.
1). In our implementation, the right hand has been replaced
with the ShadowHand with 23 DoFs.

Two objects from each of the four sliding manipulation
preshape sets were tested (Table I). Each preshape set con-
sists of five preshapes from two objects in the same category,
which were manually extracted from human examples gained
with a motion capture experiment. The tested objects were
not included in the database examples. For the final grasps
we provide 12 grasp-types to both planners. Our method
selects suitable grasp-types corresponding to the selected and
adapted preshape. The direct grasp planner randomly selects
one out of the 12 grasp-types and tries to find a stable lifting
grasp, until a solution is found or all 12 are tried. We limited
the search for a stable solution for each grasp-type to 20s.

Each object is placed at a random position and plane
orientation on the table within a 1.2m×0.6m region in front
of the robot, shifted 0.4 m right of the robot center. We
discard the random position if the object is not within the
reaching radius of the robot’s right arm. We generate poses
in this manner to obtain 15 reachable poses per object. Both
planners attempt an object acquisition solution for the same
15 starting object poses.

B. Direct Grasp Planner

For direct grasp planning the implementation described
in Section III-F was used but because no object context is
available, grasp-types available for the robot are randomly
selected and adapted.



TABLE I
OBJECTS AND OBJECT CATEGORIES*.

O0 flat shape O1 lightweight box O2 heavy box O3 cylinder

CD bat book tin
credit card stapler keyboard box sugar canister
15-cm ruler tape dispenser VGA-splitter plant
house key cassette tape sugar box water jug

bed linen box
portable hard-drive

*All objects were manipulated in the human study. Objects in the
first row were tested in the simulation validation. The objects in the
second and third rows provided the examples for preshape and
manipulation information in the tested database.

C. Simulation Results

Table II presents the results, separated for each object
category and planning phase. The “Pre-grasp” column for our
approach includes the object classification, calculation of the
preshape starting poses, preshape adaptation and evaluation,
and pre-grasp manipulation. The “Grasp Pose” column con-
tains the final grasp adaptation for both our method and the
direct grasp planner. The “Trajectory” column consists of the
trajectory plan from the initial position to the adapted final
grasp for both methods: direct grasp planning, as well as for
our approach if the object is initially in the final region F of
the preshape. If not, in our approach the trajectory consists
of two separate trajectories, one from the initial pose to the
adapted sliding preshape and a second one from final sliding
to the final grasp pose.

Our strategy increases the success rate for object acqui-
sition for all tests as shown in Table II. In addition, our
approach reduces the computation time for grasp adaptation
significantly regardless of whether the object is directly gras-
pable or not. Furthermore median of the planning time for the
grasp pose with our method was about 2s whereas the direct
grasp planned took about 200s. The long computation time
for the direct grasp planner results through the exhaustive
and in the most cases not successful search for stable final
grasp candidates.

D. Perceptual Evaluation

We also evaluated human response to the pre-grasp ma-
nipulation plans and direct grasping plans. In our survey, 21
participants viewed pairs of simulation videos showing the
humanoid agent using, in a random order, either pre-grasp
manipulation or direct grasping. Participants selected the
preferred video in each pair. Table III shows that pre-grasp
rotation was preferred by more people for the cookie tin,
baseball bat, and linen box objects. A chi-square test on the
number of participants preferring pre-grasp manipulation or
direct grasping for at least 3 of the 5 video pairs rejected that
the ratio was balanced 50-50 (p(X2 = 5.76,d f = 1) = 0.02).

E. Physical Demonstration

We demonstrated the physical plausibility of our simulated
pre-grasp strategy plans on a multi-fingered robot manipula-
tor. The system consists of a 7-DoF Motoman arm and an

TABLE II
SIMULATION RESULTS FOR THE METHOD COMPARISON.

Successes Mean planning times (seconds)

out of 30 Pre-grasp Grasp Trajectory

CD, ruler
Pre-grasp push 25 25.1 42.8 53.9
Direct grasp 1 – 259.4 24.1

bat, stapler
Pre-grasp push 24 2.0 78.5 64.1
Direct grasp 21 – 99.7 60.2

book, sugar box
Pre-grasp push 29 37.0 42.7 66.6
Direct grasp 18 – 148.5 45.9

tin, water jug
Pre-grasp push 30 8.6 9.5 72.9
Direct grasp 19 – 118.7 48.3

Total out of 120 Pre-grasp Grasp Trajectory

Pre-grasp push 108 18.2 43.4 64.4
Direct grasp 59 – 156.6 44.6

TABLE III
THE NUMBER OF PARTICIPANTS WHO PREFERRED EITHER PRE-GRASP

INTERACTION OR DIRECT GRASPING IN THE VIDEO SURVEY.

Manipulation method

Object Direct grasp Pre-grasp push

Cookie tin 3 18
Dictionary 10 11
Baseball bat 6 15
CD 9 12
Linen box 5 16

Overall preference (≥ 3/5 objects) 5 16

attached Shadowhand robot with 5 fingers. In our example
demonstration, the object is a CD, which is is difficult to
grasp from a table because of its thin edge. However, the
Motoman with Shadowhand was able to grasp the CD after
first using a sliding pre-grasp manipulation planned with our
method.

The CD was manually placed on the table to match
the simulated task scene. The Motoman arm trajec-
tory produced by our simulation method was executed
open-loop on the robot. Due to limitations of the con-
trol synchronization, the hand preshapes for the Shad-
owhand were selected from our simulated plan but
were manually pre-set to match the arm trajectory tim-
ing. The video at http://his.anthropomatik.kit.
edu/english/532.php shows the comparison between
the simulated Motoman plan and the physical execution for
the CD object.

VI. DISCUSSION AND CONCLUSION

In this paper we introduced a representation framework of
pre-grasp strategies for object manipulation allowing the use
of human manipulation strategies for object grasping. We
proposed a new object representation based on preshapes
and pre-grasp manipulations which provides starting hand



configuration and poses suitable for adaptation to the object
surface, regardless to object rotation and scaling. With this
information, pre-grasp manipulation actions, which includes
all kinds of prior adjustments to object acquisition, and final
grasping can be computed online. The whole strategy results
in more robust and stable object grasping.

The most important next steps are, to include more pre-
grasp manipulations and preshape data structure to support
the thesis and to update the sliding one to a more sophisti-
cated version which is capable of avoiding obstacles on the
surface.

Future steps may explore reducing the assumptions about
the friction coefficients in the environment. Initially planning
with friction assumptions, but then using feedback during the
pre-grasp manipulation to obtain new object parameters such
as inertia and friction coefficients would increase the stability
of the final grasp due to the extra knowledge gained.

Another interesting idea is to parallelize different planning
steps. As soon as the object representation is selected, all
possible preshapes are available. Hence, one approach is
to evaluate final grasp poses in parallel which is done in
[9] by Berenson et al. as offline precomputation. Preshape
adaptation can also be parallelized due to orthogonal usage.
This would speed up final grasp planning because it is
only a selection of possible grasp solutions with respect to
environmental restrictions.

Overall, the proposed unified representation of pre-grasp
strategies for object manipulation significantly increases the
object acquisition success rate. This underlines the great
potential of using human behavior knowledge to develop new
planning strategies.
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