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Abstract—Present formulations of periodic dynamic move-
ment primitives (DMPs) do not encode the transient behavior
required to start the rhythmic motion, although these transient
movements are an important part of the rhythmic movements
(i.e. when walking, there is always a first step that is very
different from the subsequent ones). An ad-hoc procedure is
then necessary to get the robot into the periodic motion. In this
contribution we present a novel representation for rhythmic
Dynamic Movement Primitives (DMPs) that encodes both the
rhythmic motion and its transient behaviors. As with previously
proposed DMPs, we use a dynamical system approach where
an asymptotically stable limit cycle represents the periodic
pattern. Transients are then represented as trajectories converg-
ing towards the limit cycle, different trajectories representing
varying transients from different initial conditions. Our ap-
proach thus constitutes a generalization of previously proposed
rhythmic DMPs. Experiments conducted on the humanoid robot
ARMAR-III demonstrate the applicability of the approach for
movement generation.

I. INTRODUCTION

The use of motion primitives to encode complex move-

ments for robots and especially for humanoid robots has

attracted a lot of attention the past years. The seminal work

of Ijspeert et al. [1], [2] introduced the idea of Dynamic

Movement Primitives (DMPs) which are primitives of motion

that are encoded as a stable dynamical system. Both discrete

(e.g. reaching) and rhythmic (e.g. walking) motions can be

encoded with DMPs using two different canonical systems.

Multi-dimensional coordinated behaviors can be easily gen-

erated and the modulation of simple order parameters allows

to generalize the motion to different places in the workspace

with smooth transitions in frequencies and amplitudes. DMPs

have been successfully used as compact representations for

imitation learning [1], [2] or reinforcement learning [3] and

their representation as stable dynamic systems allows online

trajectory generation for obstacle avoidance [4] or sensory

feedback inclusion to improve manipulation performance [5].

While a lot of attention has been given to discrete DMPs,

the literature on rhythmic DMPs is more scarce [2], [6], [7],

[8]. Meanwhile, a lot of attention has also been given on

Central Pattern Generators (CPGs) in locomotion control.

This concept comes from animal locomotion, where CPGs

are neural networks located in the spinal cord of vertebrates

that are responsible for the generation of locomotor behavior

in most animals. They are usually modeled in robotics

as coupled dynamical systems that can reproduce periodic

coordinated locomotion patterns [9], [10], [11]. From that

point of view, rhythmic DMPs can be thought as an instance

of a CPG.

Most contributions in CPGs and rhythmic DMPs are

interested in the problem of learning a periodic motion [11],

[7], [8] or generating coordinated periodic patterns with

certain phase relationships and sensory feedback integration

[11], [9]. However, the problem of generating the transient

motion from an initial state to the periodic state is rarely

addressed. There has been work on combining both discrete

and rhythmic motions [12] but the shape of the transient

motion cannot be controlled.

Nevertheless, all periodic motions must be started in a non-

periodic way before the repeating pattern comes into play.

Starting the motion cannot be a mere reproduction of part

of the periodic pattern. For instance, when one is standing

and then starts walking, the first step is different from the

other following steps. Or when juggling, the balls have to be

thrown up in the air at first before one can juggle the balls in

a periodic motion. And all of these transient motions depend

on the initial state of the robot (i.e. how are the feet on the

ground when walking start or how are the balls distributed

in the hands when juggling) and on the task to accomplish.

There can therefore be several transients associated to one

periodic task.

Because of these two observations (a) that there is a con-

nection between the transient part and the periodic movement

and (b) that there can be multiple independent transients, we

want a system that is able to encapsulate the periodic pattern

and its transients into a unit. This unit character should apply

to both learning and executing the movement.

Addressing the problem of encoding the transient behavior

will also help us address a conceptual issue that arises when

we compare rhythmic and discrete DMPs. Discrete DMPs are

dynamical systems with a stable fixed point (a 0 dimensional

attractor) that encode the ”way” to go to the attractor, i.e.

the transient behavior from an initial start to the fixed point.

From that point of view, rhythmic DMPs are conceptually

different: although they also consist of a stable attractor (in

this case a 1-D attractor: the limit cycle), the only thing that

is encoded is the actual shape of this attractor. The transient

behavior is never encoded.

In this contribution, we propose a formulation for rhythmic

DMPs that includes both transient and periodic motion. It is

possible to include several transient behaviors with the peri-

odic motion into a single system. With this formulation, we



also make these motion primitives conceptually equivalent to

their discrete counterpart since we can control the shape of

both the transients and the attractor. We also demonstrate the

capabilities of the theoretical construction with experiments

on the ARMAR-III humanoid robot.

A. Overview of this approach

A DMP can be split into two parts: the canonical system

and the transformation system. While the canonical system

defines the state of the DMP in time, the transformation

system is the link between this DMP state and the robot.

The transformation system can be easily adapted to a desired

trajectory, i.e. by solving a standard regression problem. The

canonical system determines the type of attractor which can

be either discrete or periodic.

Since we want to encode both, transient and periodic

movement, we use a two dimensional canonical system. One

dimension represents the current phase of the periodic motion

while the other dimension corresponds to the distance of

the current state towards the periodic pattern. Therefore, a

canonical system with a unique limit cycle on the plane

is used, c.f. Fig. 1(a). While the system advances towards

the limit cycle it generates the desired transient. When the

system has come close to the limit cycle, the generation of

the periodic pattern starts.

By creating multiple paths towards the the limit cycle it is

possible to encode multiple transients for the same periodic

pattern. For this purpose, each of the paths encodes another

transient behavior, see Fig. 1(c).
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Fig. 1. Plot (a) shows a typical run of the canonical system ending up
in the stable limit cycle. Considering (φ, r) as polar coordinates, this gives
a circle around the origin, i.e. (0, 0), with fixed radius, e.g. 1. In plot (b)
the supports of the perturbation’s basis functions are visualized. Each black
dot on the limit circle represents a periodic basis function and the ring is
the union of all supports of these. Each small triangles stands for a basis
function encoding the transient part and the circles around them visualize
the extend of their support. The right plot (c) shows the same for three
different transients.

II. THE NEW DMP FORMULATION

In this section the concrete formulation for the DMP is

presented.

A. The general idea of Dynamic Movement Primitives

As already stated, each DMP consists of two parts:

{

ṡ(t) = Canonical(t, s),

ẏ(t) = Transform(t, y) + Perturbation(s).

(1)

(2)

The perturbation term in (2) is adapted to induce a desired

behavior in the system, i.e. reproducing a given trajectory.

Furthermore, [13] and [7] demonstrated that the incorpo-

ration of appropriate feedback terms within a DMP allow

the on-line adaption of the learned trajectory. In this way,

movements can be generated under consideration of dynam-

ical constraints such as obstacle avoidance or joint limit

constraints.

B. Preliminaries and Terms

The process of learning a demonstrated motion be con-

sidered as the problem of function approximation. Hence,

given a trajectory ydemo : [0,∞) → R (we use function and

trajectory synonymously), we desire a system which provides

y : [0,∞) → R being similar to the original trajectory. In

our applications, the values of ydemo describe the evolution

of one degree of freedom in time.

To shorten the notation in the following, some basic

properties of functions are recalled.

Definition 1. Let D ⊂ R, A,B be sets and f : D → R,

g : A→ B be functions.

1) For C ⊂ A the function g|C → B, g|C(x) := g(x) for

all x ∈ C, is called the restriction of g to C.

2) If there is a p̃ > 0 such that f(x + p̃) = f(x) for

all x ∈ D then f is called periodic. In this case the

number

p := inf
{

p > 0 : f(x+ p) = f(x) for all x ∈ D
}

is called the period of f . We also say that f is p-

periodic.

3) Let D = [0,∞). If there exists a T̃ > 0 such that the

restriction f |[T̃ ,∞) is periodic, we define

T := inf
{

T̃ > 0 : f |[T̃ ,∞) is periodic
}

to be the transient length of f . Further, in this case

f |[0,T ) is the transient part of f . We call f |[T,∞) the

periodic part of f and say that f is composed-periodic

with period p, where p is the period of f |[T,∞). In the

following we will write f̃ := f |[T,∞) for the periodic

part of a composed-periodic trajectory f with transient

length T .

Simply spoken, the transient length T is the shortest time

one has to wait until the trajectory becomes periodic.

From now on, let ydemo : [0,∞) → R be a composed-

periodic trajectory with transient length T > 0 and period

length p > 0. The restriction of having only one trajectory

and hence only a single transient is used for simplicity

reasons and will be lifted in Section V-A.

C. The Canonical System

The canonical system (see (1)) for the new DMP formu-

lation is an oscillator in the phase plane. It is defined by

s(t) := (φ(t), r(t))T ∈ R× (0,∞) for φ, r solving

(3)











φ̇ = Ω,

ṙ = η(µα − rα)rβ ,

φ(0) = φ0, r(0) = r0.

(3a)

(3b)

(3c)



Here, µ > 0 denotes the radius of the limit cycle and

η, α, β > 0 are constants. The value of Ω > 0 defines the

angular velocity of φ and has to be chosen according to the

period of the desired trajectory ydemo, i.e. Ω = 2π
p

.

The values φ0 ∈ R and r0 > 0 are initial conditions which

have to be chosen individually for each desired transient.

How to determine these values is explained in Section III-D.

It can be shown that µ is a globally stable fixed point for r,

i.e. for each r0 > 0 it holds r(t) → µ for t→ ∞.

The speed and shape of convergence of r(t) to µ can

be adjusted with α, β, and η. We used the values µ = 1,

η = 35, α = 1
6 , and β = 1

1000 which were determined

experimentally.1

The solution is unique for each pair of initial conditions

(φ0, r0). Therefore, two different approaches towards the

limit cycle cannot intersect each other. This becomes impor-

tant when more than one transient has to be encoded since it

is desirable that different transient cannot affect each other.

Fig. 2 shows examples of solutions using (3) with different

initial conditions.
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Fig. 2. Four simulation runs of the canonical system using different initial
conditions. The convergence of the limit radius µ = 1 is visible.

D. The Transformation System

The transformation system is a critically damped spring

system with one global point attractor given by
{

ż = Ω
(

αz

(

βz(g − y)− z
)

+ f(φ, r)
)

,

ẏ = Ωz.
(4)

This is a standard transformation system, see [7]. The con-

stants αz, βz > 0 are chosen according the ratio αz

βz

= 4
1

in order to ensure critical damping. With f ≡ 0 the system

state y converges to the anchor point g ∈ R. By adapting

f corresponding to the demonstrated trajectory ydemo the

system oscillates around g in a similar manner as featured

by ydemo. Here, f is defined as

f(φ, r) =

∑M
j=1 ψj(φ, r)w̃j +

∑N
i=1 ϕi(φ, r)wi

∑M
j=1 ψj(φ, r) +

∑N
i=1 ϕi(φ, r)

, (5)

where W := (w1, . . . , wN , w̃1, . . . , w̃M )T ∈ R
N+M con-

tains the weights which can be adjusted to fit the desired

trajectory and

ψj : R× (0,∞) → R, j = 1, . . . ,M,

ϕi : R× (0,∞) → R, i = 1, . . . , N

1The canonical system works for all η, α, β, µ > 0. The values we have
chosen lead to a well shaped convergence allowing us to place the supports
of the basis functions properly on the phase plane.

are the basis functions. While ψj are functions encoding the

transient part of the motion, the functions ϕi are 2π-periodic

in the first argument, and encode the periodic pattern. The

vector of basis functions can be described as

Ψ := (ϕ1, . . . , ϕN , ψ1, . . . , ψM ). (6)

The crucial point in (4) and (5) is the perturbation force f

which depends on two parameters, namely the state (φ, r)
of the canonical oscillator. The first parameter φ denotes the

phase of the motion whereas the second one r represents the

distance from the limit cycle.

III. CONNECTING THE CANONICAL SYSTEM AND THE

TRANSFORMATION SYSTEM

As pointed out in the previous section, ψj is used to

encode the non-periodic transient behavior and ϕi to encode

the periodic pattern. This means that in the beginning of the

movement the system should be only affected by ψj while

in the long run their impact vanishes and ϕi smoothly begin

to take over the control of the system.

Considering the convergence behavior of the canonical

system, c.f. the right plot in Fig. 2, the idea is to use the path

to the limit cycle for encoding the transient part of ydemo and

the limit cycle itself for the periodic pattern.

To explain the properties of the basis functions ψj and ϕi

the following definition is useful.

Fix n ∈ {1, 2} and a small2 δ > 0 and let b : Rn → R

be a function. The set of x ∈ R
n where b does not vanish is

called the support of b (with respect to δ), i.e.

suppδ b := {x ∈ R
n : |b(x)| ≥ δ} ⊂ R

n.

Fig. 1(b),(c) visualize the supports of the basis functions ψj

and φi.

A. Fading from Transient to Periodic Movement

The basis functions ψj affect the transient part of the

motion only and should not have an impact on the periodic

pattern. Therefore, ψj vanish close to the limit cycle, i.e.

there exists a µ1 > µ such that ψj |R×(0,µ1) = 0. After

passing the limit µ1, the ϕi dominates the control of the

system. Hence, the condition ϕi|R×(0,µ1) = 1 holds. The

value of µ1 is a constant that can be chosen arbitrarily. In

the course of experiments, we determined that µ1 = 1.2µ is

a reasonable choice.

Since the movement should be smooth, there has to be a

region where the supports of the ϕi and the ψj overlap. The

time needed for the canonical oscillator to pass that region

is called transient fading time tf .

To create the fading region, µ2 > µ1 is set forcing the

supports of ϕi and ψj at most overlap for r ∈ (µ1, µ2).
Here, µ2 is chosen such that the transient fading time which

the oscillator (3) needs to converge from µ2 to µ1 is equal

to tf . Fig. 3 visualizes the resulting overlapping of the basis

function’s supports and the radii µ1, µ2.

2Here, typically δ ≈ 10−3.
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Fig. 3. Plot (a) shows the support of one periodic basis function ϕi located
at the center ci on the limit cycle with radius µ. In (b), the support of the last
transient basis function ψM is added. The dotted line denotes the trajectory
generated by the canonical system on the phase plane. Observe that the
clipped circle results from the function a, c.f. (9), which is 0 for r < µ1.

B. Encoding the periodic movement

The basis functions ϕi encode the periodic pattern and thus

should vanish away from the limit cycle. Therefore, ϕi is

composed of two functions g : (0,∞) → R and hi : R → R

as follows

ϕi(φ, r) = g(r)hi(φ).

Here, hi is 2π-periodic and encodes the periodic pattern. The

function g makes ϕi vanish away from the limit cycle, i.e.

g|(0,µ1) = 1 and g|(µ2,∞) ≈ 0. (7)

For our experiments presented in the following we used

hi(φ) = exp
(

vi
(

cos(φ− ci)− 1
)

)

,

g(r) =

{

1, r ∈ (0, µ1],

exp
(

− ṽ(r − µ1)
k
)

, r ∈ (µ1,∞),
(8)

where vi > 0 determines the width of suppδ hi, c.f.

Fig. 4(b). Setting ci := (i−1) 2π
N

distributes the hi uniformly

over the limit cycle. The value ṽ > 0 is chosen such that g

satisfies (7). Note that g is k times continuously differentiable

on (0,∞) for fixed k ∈ N.3 Fig. 4 provides example plots

of ϕi, g and hi.
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Fig. 4. Plot (a) shows two peaks of a periodic basis function ϕi centered
at ci. In (b) the projection onto the φ axis, i.e. hi, is shown. The values s1
and s2 mark the borders of suppδ hi. Plot (c) shows the projection onto
the r axis, i.e. g. Here, the interval [µ1, µ2] used for fading is highlighted.

Using polar coordinates suppδ ϕi is projected onto the

phase plane leading to a circular sector with radius µ2 where

the angle depends on vi. The value of ci rotates the projection

of the support around the origin, c.f. Fig. 3.

3We used k = 4 which makes the perturbation force smooth and leads
to the desired fading behavior.

C. Encoding the transient movement

The basis functions ψj are arranged on the phase plane

away from the limit cycle as shown in Fig. 1, where the small

triangles symbolize the centers of the functions ψj and the

circles visualize the extend of their support. Similarly to the

ϕi, the ψj are composed of two functions: one for the actual

encoding and another one for keeping them away from the

limit cycle. Hence, each function ψj has the form4

ψj(φ, r) = a(r)bj
(

‖pol(φ, r)− qj‖2
)

where the function a : (0,∞) → R ensures that the ψj

are nonzero only away from the limit cycle. The function

bj : R → R is a standard basis function which can be

represented in the form of a Gaussian, see e.g. [1]. Placing

the norm difference into bj leads to a radially symmetric

function centered around qi ∈ R
2 on the phase plane. Here,

we used

a(r) =

{

exp
(

− ṽ(r − µ2)
k
)

, r ∈ (0, µ2),

1, r ∈ [µ2,∞),
(9)

bj(r) = exp
(

− v̄r2
)

.

The function a is an analogon to the g in the definition of ϕi,

c.f. (8). By choosing the ṽ as in (8) the function a satisfies a

condition symmetric to (7) with the same µ1, µ2, c.f. Fig. 4(c)

and Fig. 5(c).

For each ψj , we choose a δj > 0 defining the radius of

the support for the ψj . Fig. 5 depicts an exemplary plot.

The centers qi and radii δj are chosen in such a way, that
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Fig. 5. In (a) a basis function ψj with center qj is shown. Plot (b) shows
the distance function bj , where δj determines the support’s radius. The
function a, used make ψj(φ, r) = 0 for r < µ1, is shown in (c). As in
Fig. 4 the fading interval [µ1, µ2] is highlighted.

basis functions ψj are uniformly distributed in time, i.e. the

duration of influence is identical for each basis function.

By doing so the same approximation resolution is attained

everywhere assuming that we have no a priori knowledge

about the demonstrated trajectory ydemo.5

Fig. 6 visualizes the fading interval and shows the resulting

influence of the basis functions over time.

4Here, pol(φ, r) =
(

r cos(φ), r sin(φ)
)

is the polar coordinate mapping

and ‖x‖2 denotes the Euclidean norm of x ∈ R
2.

5Choosing the support of the ψj according to the changing behavior of
ydemo is a possible extension which is not discussed in this work.
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Fig. 6. The plot shows the graphs of all basis functions ψj and ϕi

over time, i.e. the graphs of all functions b̂(t) = b
(

φ(t), r(t)
)

for each

component b̂ of Ψ, cf. (6). Here,
(

φ(t), r(t)
)

is the solution of the canonical
system (3) at time t. Therefore, each peak corresponds to a basis function
ψj or ϕi respectively. The plot shows M = 15, N = 30 basis functions
for a transient length T and a period duration of p = 2T . Note that for
t < T − tf the transient basis functions ψj drive the system whereas the
ϕi gain complete control after t = T .

D. Selecting initial conditions of the canonical system for a

given transient length

In order to parameterize the canonical system with respect

to the desired trajectory, a mapping initT is to be defined

which yields the initial values φ0, r0 such that the canonical

oscillator reaches a desired state (φ̃, r̃) after the transient

length T .

Given a fixed pair (φ̃, r̃) ∈ R × (0,∞), exactly one pair

of initial conditions (φ0, r0) ∈ [0, 2π)× (0,∞) exists for the

canonical system (3) such that the oscillator reaches (φ̃, r̃)
after the transient length T of ydemo, i.e.6

r(t)











> r̃, t < T,

= r̃, t = T,

< r̃, t > T,

φ(t)











< φ̃, t < T,

= φ̃, t = T,

> φ̃, t > T.

Therefore, we can define the mapping initT by

initT (φ̃, r̃) := (φ0, r0).

E. Learning a given trajectory

To adapt the system to a given trajectory ydemo, the

canonical system (3) has to be initialized such that the

DMP generates a composed-periodic trajectory with transient

length T . Therefore, we choose

(φ0, r0) := initT (0, µ1),

in order to enforce the system to reach the radius µ1 after

time T while for the phase φ(T ) = 0 holds.7

Further, the weights W ∈ R
N+M in (5) have to be

adjusted to fit the demonstrated trajectory ydemo. This is done

by rearranging (4) to the perturbation f and replacing z = ẏ
Ω ,

ż = ÿ
Ω . For each time t ∈ [0,∞) one obtains

f
(

φ(t), r(t)
)

=
ÿ(t)

Ω2
− αz

(

βz
(

g − y(t)
)

−
ẏ(t)

Ω

)

. (10)

Inserting ydemo, ẏdemo, ÿdemo into (10) results in a perturbation

force value ftarg

(

φ(t), r(t)
)

for each pair
(

φ(t), r(t)
)

.

6The assertions for φ are meant modulo 2π.
7Here, the entrance phase φ(T ) can be chosen arbitrarily. The entrance

phase becomes important when more than one transient is encoded, see
Section V.

In practice, only L ∈ N discrete samples of the trajectory

ydemo are known, i.e. ydemo =
(

ydemo(t1), . . . , ydemo(tL)
)

.

Hence, (φl, rl) :=
(

φ(tl), r(tl)
)

and the corresponding

ftarg(φl, rl) for l = 1, . . . , L are calculated using (10). Fitting

these values to the perturbation representation in (5) leads to

a locally linear weighted regression problem for the weight

vector W , i.e.

Wi := argmin
w∈R

L
∑

l=1

Ψi(φl, rl)
(

ftarg(φl, rl)− w
)2
, (11)

for i = 1, . . . ,M+N . This problem can be solved efficiently

by standard linear regression methods, see e.g. [14].

Note that all weights, those related to the transient and

those related to the periodic pattern, can be calculated all at

once by solving (11).

IV. EXPERIMENTS

The proposed DMP formulation has been implemented on

the humanoid robot ARMAR-IIIb to enable the learning of

periodic actions such as wiping through human observation.

For this purpose, motion data of human wiping demonstra-

tions were recorded using a marker-based human motion

capture system provided by Vicon [15]. With markers placed

on the hand and the wrist of the human subject trajectories

describing hand’s wiping movements in task-space were

captured at a frequency of 100 Hz. In our experiments,

four styles of wiping movements were investigated which

feature varying discrete initial approach movements (simple

and complex) and different periodic wiping patterns (circle

and figure eight), see Fig. 7. The captured human demon-

strations and the generated trajectories using the correlating

DMP are illustrated in Fig. 7. Experiments with multiple

approach movements as described in Section V have not been

conducted yet.
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Fig. 7. From the left to right plot all recorded wiping styles (1,2,3,4)
are shown. The top line shows the original motion that was captured
from human demonstration. On the bottom, the corresponding trajectories
generated by the DMP are visualized. Note the different starting and anchor
points indicated by the dashed lines.

In order to apply the proposed DMP formulation to a

recorded trajectory y
demo

= (y1, . . . , yL) with corresponding

times t1, . . . , tL we need to determine the transient fading

time tf , the period p and the anchor point g.

For that reason, we segmented the trajectory into two parts,

i.e. ytrans = (y1, . . . , yLtrans
) and yper = (yLtrans+1, . . . , yL).



The segment ytrans contains the data points corresponding

to the transient part and yper is the vector of data points

corresponding to the periodic pattern.

By this segmentation we obtain the transient fading time

as the duration of the transient part, i.e. tf = tLtrans+1, and

the anchor point as the mean of all points of the periodic

part, i.e.

g =
1

L− Ltrans

L
∑

k=Ltrans+1

yk.

The segmentation itself was done algorithmically.

We employed M = N = 40 basis functions to represent

the demonstrated movements. Fig. 8 shows the convergence

behavior for an increasing number of basis functions to

approximate a synthesized function.

0 T T + p

0

Fig. 8. The plot shows the convergence behavior for an increasing number
of basis functions to a synthesized signal. The thick plot corresponds to the
original trajectory which is approximated by the presented DMP using differ-
ent counts of basis functions. Concretely, N =M = 10, 14, 20, 27, 35, 40
basis functions have been used.

In order to synthesize the learned wiping movement on the

robot, the DMP is parameterized with scene-specific start and

anchor position.

The capability of this DMP formulation regarding the

generalization to different start and anchor positions is shown

in Fig. 9.

Fig. 9. On the left the generalization to different anchor points (black dots)
is visualized. The right plot shows runs with different starting points of the
same motion. All dashed plots show reproductions of wiping style 1 and
the solid line corresponds to the original trajectory.

In our experiments, for each DMP wiping movements were

generated starting from three points and leading to three

different goal positions which are equivalent to the anchor

points of the periodic pattern.

By integrating the resulting control policy and using differ-

ential kinematics the wiping movements could be reproduced

on our experimental platform the humanoid robot ARMAR-

IIIb (see Fig. 10). ARMAR-IIIb is a copy of the robot

ARMAR-IIIa (see [16]) and consists of seven subsystems:

head, left arm, right arm, left hand, right hand, torso, and

a mobile platform in the form of a wheel-based holonomic

Fig. 10. The humanoid platform ARMAR-IIIb wiping the table with a
sponge using the presented DMP formulation.

platform. The upper body of the robot provides 33 DoF:

2 ·7 DoF for the arms and three DoF for the torso. The arms

are designed in an anthropomorphic way: three DoF for each

shoulder, two DoF in each elbow and two DoF in each wrist.

Each arm is equipped with a five-fingered hand with eight

DoF. A force torque sensor between the wrist and the hand

of the robot allows measurements of external forces exerted

on the robot’s TCP.

Due to inaccuracies within the kinematic chain from

platform to the robot’s TCP, contact with the surface to be

wiped and the wiping tool cannot be guaranteed. To attain

a goal-directed reproduction of the learned wiping action,

we exploit the force torque sensor in order to adapt the

vertical movement of the TCP to the surface shape during the

execution of the generated wiping movement. This additional

online force adaptation step requires a further reduction of

the reproduction speed. Hence, the wiping movements could

be reproduced at half of the demonstrated speed. In order to

visualize the executed robot trajectories, a pen is attached to

the sponge. To minimize the friction between the sponge and

the surface, only soft pressure is applied during the wiping.

Hence, contact is already determined if only parts of the

sponge, not necessarily the pen, touch the surface leading to

discontinuities in the drawn trajectories. The results of the

experiments are depicted in Fig. 11 and can be reviewed in

the attached video.

V. GENERALIZATION

In this section we will outline how to generalize the DMP

to handle multiple transients and multiple output dimensions.

A. Encoding and learning multiple transients

In order to to encode multiple transient parts, we assume

that, instead of a single trajectory, a set of composed-periodic

trajectories y1demo, . . . , y
K
demo : [0,∞) → R, K ∈ N, with

common periodic part is given.8 The corresponding transient

lengths are denoted by T1, . . . , TK .

Different trajectories can enter the common periodic part

at different phases. Therefore, we will define the phase shift

8Throughout this section, the exponents are indices.



Fig. 11. Top: Single reproduction of a wiping movement from style 1, 2, 3, and 4. The trajectory is drawn using a pen attached to the sponge. Middle:
Multiple reproductions of a wiping movement with different start positions. Bottom: Multiple reproductions of a wiping movement with different goal
positions (equivalent to the anchor points of the periodic pattern).

that determines how far the trajectories have to be shifted

relatively to each other to align the periodic pattern.

Considering two p-periodic functions a, b : R → R, if

there is a s > 0 with a(t) = b(t + s) for all t ∈ R we call

a and b to be shifted in phase and define the phase shift of

a and b by

ps (a, b) := min {s ≥ 0 : a(t) = b(t+ s) for all t ∈ R} .

It is assumed that the periodic parts ỹ1demo, . . . , ỹ
K
demo are

pairwisely shifted in phase.9 Since we want to encode all

trajectories with the a single canonical system, a common

phase φ is needed. To achieve this, we select the trajectory

with the shortest transient length, say yk0

demo, and shift all the

other trajectories such that the periodic pattern are in-phase.

Hence, it is defined that the trajectory with the shortest tran-

sient length enters the periodic pattern at φ = φ̂k0 := 0. The

other trajectories are aligned relatively to yk0

demo according

to the corresponding phase shifts sk := ps
(

ỹk0

demo, ỹ
k
demo

)

.

This leads to entrance phases φ̂k = 2π
p
sk, k = 1, . . . ,K,

of the canonical system. For each trajectory ydemo we obtain

initial conditions (φk0 , r
k
0 ) ∈ [0, 2π)×(0,∞) of the canonical

oscillator by

(φk0 , r
k
0 ) := initTk

(

φ̂k, µ1

)

, k = 1, . . . ,K.

Each transient has its own set of Mk ∈ N basis functions

ψk
1 , . . . , ψ

k
Mk

: R× (0,∞) → R and therefore the perturba-

tion term in (5) gets extended to

f(φ, r) =

∑K
k=1

∑Mk

j=1 ψ
k
j (φ, r)w̃

k
j +

∑N
i=1 ϕi(φ, r)wi

∑K
k=1

∑Mk

j=1 ψ
k
j (φ, r) +

∑i
i=1 ϕi(φ, r)

.

9Here ỹdemo is the periodic part of ydemo, see Definition 1.

Further, we set D :=
∑K

k=1Mk +N to be the total number

of basis functions and extend the vector of weights and the

vector of basis function to

W := (w1, . . . , wN , w̃
1
1, . . . , w̃

1
M1
, . . . , w̃k

1 , . . . , w̃
k
Mk

)T ,

Ψ := (ϕ1, . . . , ϕN , ψ
1
1 , . . . , ψ

1
M1
, . . . , ψk

1 , . . . , ψ
k
Mk

).

Note that both, W and Ψ, consist of D components.

In practice, we know just samples of the demonstrated

trajectories, i.e. each ykdemo consists of Lk ∈ N discrete data

points. Therefore, we have ykdemo = (yk1 , . . . , y
k
Lk

) where

ykl = ykdemo(t
k
l ), l = 1, . . . , Lk, are the values at the given

discrete time samples tkl . We obtain the corresponding states

of the canonical system by (φkl , r
k
l ) :=

(

φk(tkl ), r
k(tkl )

)

.

Here, the tuple of functions (φk, rk) is the solution of

the canonical system (3) for the initial conditions (φk0 , r
k
0 ).

By inserting each demonstrated trajectory ykdemo and the

associated states of the canonical system (φkl , r
k
l ) into (10)

the target perturbation force samples f(φkl , r
k
l ) are obtained

for l = 1, . . . , Lk.

Learning the trajectories is then achieved by solving the

linear regression problem (12) for each i = 1, . . . , D.

Wi := argmin
w∈R

K
∑

k=1

Lk
∑

l=1

Ψi(φ
k
l , r

k
l )
(

f(φkl , r
k
l )− w

)2
(12)

B. Driving more than one joint or more than one task space

dimension

In order to encode the movement of multiple joints or a

motion in multidimensional space we need to to approximate

a multidimensional input trajectory ydemo : [0,∞) → R
D,

ydemo(t) =
(

y1(t), . . . , yD(t)
)T

∈ R
D. This can be achieved

by assigning a separate transformation system Tj , c.f. (4),

to each of the one-dimensional trajectories yj . Then a



Fig. 12. The plot shows a synthetic signal over time featuring three different
transients encoded using the generalization described in Section V-A. The
vertical lines mark the entrance phase for each transient. By the dashed lines
the reproductions from different initial conditions are visualized. Note that
simple linear transients have been chosen in order to maintain clarity of the
plot.

single canonical system C, see (3), is shared among these

transformation systems. The DMP for the multidimensional

demo trajectory is represented by the tuple (C, T1, . . . , TD).
Sharing the canonical system synchronizes the outputs of

the transformation systems. Note that each transformation

system Tj features a distinct weight vector W (j) obtained

by solving (11) or (12) respectively for each dimension

separately.

VI. CONCLUSION

In this work, we presented a DMP formulation which

unifies the representation of a periodic movement and its

transients. In order to do so, based on the DMP formulation

presented in [7] we extended the canonical system by one

dimension using a two dimensional oscillator. Further, we

designed suitable basis functions. This formulation has been

evaluated for the scenario of wiping. Based on human

demonstrations of different wiping styles (featuring a discrete

approach and the periodic movement) DMPs were learned

and reproduced on a humanoid robot.

In order to attain a more general representation, in this

work we presented a method which enables the encoding

of multiple transients for the same periodic pattern. We pro-

vided a proof of concept evaluation using a synthetic pattern.

Our experiments revealed limitations of the generalization

properties of the used transformation system. For instance,

scaled or rotated reproductions of the encoded movement are

not possible with the presented formulation. Hence, we will

examine the combination of alternative transformation sys-

tems with the new DMP. In this context, we will investigate

how feedback can be incorporated to allow on-line adaption.

For example, force profile learning similar to the approaches

presented in [17], [5] and obstacle avoidance are of interest.

In addition, we will investigate how to encode the end of the

movement in a similar way as the transients.

ACKNOWLEDGMENT

This research was partially conducted within the Inter-

national Center for Advanced Communication Technologies

(interACT), was funded from the European Union Sixths

and Seventh Framework Programme under grant agree-

ment no. 270273 (Xperience), and supported additionally

by National Science Foundation grants ECS-0326095, IIS-

0535282, IIS-1017134, CNS-0619937, IIS-0917318, CBET-

0922784, EECS-0926052, CNS-0960061, the DARPA pro-

gram on Autonomous Robotic Manipulation, the Army Re-

search Office, the Okawa Foundation, the ATR Compu-

tational Neuroscience Laboratories, and the Max-Planck-

Society.

REFERENCES

[1] A. J. Ijspeert, J. Nakanishi, and S. Schaal, “Movement imitation
with nonlinear dynamical systems in humanoid robots,” in In IEEE
International Conference on Robotics and Automation (ICRA), 2002,
pp. 1398–1403.

[2] J. N. Auke Jan Ijspeert and S. Schaal, “Learning rhythmic movements
by demonstration using nonlinear oscillators,” in In Proceedings of the
IEEE/RSJ Int. Conference on Intelligent Robots and Systems (IROS),
2002, pp. 958–963.

[3] E. Theodorou, J. Buchli, and S. Schaal, “A generalized path integral
control approach to reinforcement learning,” journal of machine
learning research, vol. 11, pp. 3137–3181, 2010. [Online]. Available:
http://www-clmc.usc.edu/publications//T/theodorou10aNew.pdf

[4] H. Hoffmann, P. Pastor, D.-H. Park, and S. Schaal, “Biologically-
inspired dynamical systems for movement generation: automatic real-
time goal adaptation and obstacle avoidance,” in International Confer-
ence on Robotics and Automation (ICRA), 2009. [Online]. Available:
http://www-clmc.usc.edu/publications/H/hoffmann-ICRA2009.pdf

[5] P. Pastor, L. Righetti, M. Kalakrishnan, and S. Schaal, “Online
movement adaptation based on previous sensor experiences,”
in IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), 2011. [Online]. Available: http://www-
clmc.usc.edu/publications/P/pastor-IROS2011

[6] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato, “Learning from demonstration and adaptation of locomo-
tion with dynamical movement primitives,” Robotics and Autonomous
Systems, vol. 47, pp. 79–91, 2003.

[7] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarc̆ic̆, “On-line learning
and modulation of periodic movements with nonlinear dynamical
systems,” Autonomous Robots, vol. 27, no. 1, pp. 3–23, 2009.

[8] T. Petric, A. Gams, A. Ijspeert, and L. Žlajpah, “On-line frequency
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