
Constellation - An Algorithm for Finding Robot Configurations that
Satisfy Multiple Constraints

Peter Kaiser1 Dmitry Berenson2 Nikolaus Vahrenkamp1 Tamim Asfour1

Rüdiger Dillmann1 Siddhartha Srinivasa3

Abstract— Planning motion for humanoid robots requires
obeying simultaneous constraints on balance, collision-
avoidance, and end-effector pose, among others. Several al-
gorithms are able to generate configurations that satisfy these
constraints given a good initial guess, i.e. a configuration which
is already close to satisfying the constraints. However, when se-
lecting goals for a planner a close initial guess is rarely available.
Methods that attempt to satisfy all constraints through direct
projection from a distant initial guess often fail due to opposing
gradients for the various constraints, joint-limits, or singular-
ities. We approach the problem of generating a constrained
goal by searching for a configuration in the intersection of all
constraint manifolds in configuration space (C-space). Starting
with an initial guess, our algorithm, Constellation, builds a
graph in C-space whose nodes are configurations that satisfy
one or more constraints and whose cycles determine where the
algorithm explores next. We compare the performance of our
approach to direct projection and a previously-proposed cyclic
projection method on reaching tasks for a humanoid robot with
33 DOF. We find that Constellation performs the best in terms
of the number of solved queries across a wide range of problem
difficulty. However, this success comes at higher computational
cost.

I. INTRODUCTION

The structure of humanoid robots and the tasks they are
expected to perform can severely restrict the set of feasi-
ble robot configurations. Humanoids must commonly obey
simultaneous constraints on balance, collision-avoidance,
and end-effector pose, among others. The feasible set of
configurations is actually the intersection of the constraint
manifolds corresponding to each of these constraints. In
order to plan for humanoid motion, a planner must be given
a goal configuration within this intersection.

Finding such a configuration is challenging because the
constraints we consider are not given in closed form and
there is no explicit representation of them in configuration
space (C-space). Furthermore, the manifolds of feasible
configurations for these constraints are known to be non-
convex and disjoint [1] and some constraints, such as those
on end-effector pose, induce lower-dimensional constraint
manifolds. Though random sampling can be used to find
configurations that meet some constraints, lower-dimensional
manifolds have no volume in C-space, thus the probability
of generating a random sample on such a manifold is 0.

1Institute for Anthropomatics, Karlsruhe Institute of Technology,
Karlsruhe, Germany peter.kaiser@student.kit.edu,
{vahrenkamp, asfour, dillmann}@kit.edu 2EECS
Deparment, University of California, Berkeley, Berkeley, CA,
USA berenson@eecs.berkeley.edu 3The Robotics
Institute, Carnegie Mellon University, Pittsburgh, PA, USA
siddh@cs.cmu.edu

Fig. 1. The humanoid ARMAR-III [3], virtually enhanced with two 6 DOF
legs (33 DOF total), reaching in cluttered environments while satisfying
multiple constraints. The legs are a scaled-up version of the iCub legs [4].

Sentis and Khatib [2] showed that, given an initial guess
close to the intersection of many constraint manifolds, pro-
jecting the guess to one of the constraint manifolds while
projecting to the others in the null-space of the first constraint
is often sufficient to generate a feasible configuration. This
strategy, which we term direct projection, can be used to
meet a variety of simultaneous constraints for humanoid
robots. However, for many tasks, such as a humanoid reach-
ing for an arbitrary target in a cluttered environment, a
close initial guess is rarely available. Direct projection from
a distant guess can fail due to opposing gradients for the
various constraints, joint-limits, or singularities.

To generate a configuration near the intersection set our
algorithm, Constellation, first uses direct projections from
an initial guess to generate configurations that meet at least
one constraint. These configurations are then used as nodes
in a graph. Two nodes are connected by an edge depending
on which constraints they satisfy and the distance between
them. At each iteration of Constellation, we find the shortest
cycle in this graph that contains a node on each constraint
manifold. We then use that cycle’s nodes as input to a method
based on downhill-simplex [5] that outputs a new guess con-
figuration. This guess configuration is then projected to all
the constraint manifolds and the nodes resulting from these
projections are added to the graph along with appropriate
edges. This process is repeated until a node satisfying all
constraints is found. By focusing on short cycles of nodes
that, together, meet all constraints, the algorithm is able to
explore areas of C-space where the intersection of all con-
straint manifolds is likely to occur. Also, since Constellation
uses direct projection as its underlying projection operator,
all problems that can be solved by a single direct projection

2012 IEEE International Conference on Robotics and Automation
RiverCentre, Saint Paul, Minnesota, USA
May 14-18, 2012

978-1-4673-1405-3/12/$31.00 ©2012 IEEE 436

from a given initial guess will be solved by Constellation.
In the remainder of this paper we first describe the

Constellation algorithm and how we compute displacements
and Jacobians for the various constraints. We then compare
the performance of our approach to direct projection and
a previously-proposed cyclic projection method [6], which
attempts to find the intersection by iteratively projecting to a
repeating sequence of constraints. We also compare to a new
variant of the cyclic projection method that uses the null-
space when projecting. The four approaches are evaluated
on reaching tasks for a 33 DOF humanoid, which was
created by combining the upper body of ARMAR-III [3]
with the scaled-up legs of iCub [4] (see Fig. 1). We find
that Constellation performs the best in terms of the number
of solved queries across a wide range of problem difficulty.
However, this success comes at higher computational cost.

II. RELATED WORK

The projection methods in Constellation are derived from
iterative inverse-kinematics techniques [2], [7] and gradient-
descent controllers [8], [9], [2].

Previous methods in motion planning and configuration
optimization have concentrated on generating configurations
that satisfy a specific class of constraints, such as balance
[10], closed-chain kinematics [11] [12] [13], and task space
constraints [14] [15] [16]. While these methods are effective,
each is restricted to constraints of a certain type and/or
dimensionality. We seek an approach that can generalize over
a wide range of constraints relevant to humanoid robots, i.e.
a unified method that is able to satisfy constraints of varying
types and dimensionalities.

Randomized Gradient Descent (RGD) [17] can be used
to iteratively project a configuration toward an arbitrary
constraint [18]. Though RGD is quite general, it requires
significant parameter-tuning and can take quite a long time
to converge to within a small tolerance of the constraint, es-
pecially in high-dimensional spaces, thus it is not appropriate
for our application.

Another approach to finding configurations that satisfy
multiple constraints is to frame the task as a general op-
timization problem and to use a solver like FSQP, as in
[19]. An overview of such global optimization methods
can be found in [20]. While global optimization algorithms
can be applied to many problems, they are often quite
time-consuming and require that constraints meet certain
criteria such as differentiability. Constraints such as collision-
avoidance for complex geometries are difficult to encode in
a way that is consistent with such criteria.

A method that is related to Constellation is cyclic pro-
jection [6], which iteratively projects a configuration to a
repeating sequence of constraints. This algorithm does not
take advantage of the null-space of a constraint, which
we show is quite useful for guiding the search toward the
intersection of the constraints. We compare Constellation to
cyclic projection in Section V.

Algorithm 1: projectToConstraint(qs, cprim, Csec)

while NotStalledOrFailed() do1

∆x← getDisplacement(qs, cprim, δprim)2

∆xsec ← getDisplacement(qs, Csec, δsec)3

if ||∆x|| < ε and ||∆xsec|| < ε then4

return qs5

end6

J ← getJacobian(qs, cprim)7

Jsec ← getJacobian(qs, Csec)8

∆qerror ← J#∆x+ (I − J#J)JT
sec∆xsec9

qs ← qs −∆qerror10

end11

return NULL12

III. THE CONSTELLATION ALGORITHM

Our approach to finding a configuration that obeys a given
set of constraints C is based on the idea of choosing a
guess configuration q in each iteration and projecting it to
each constraint c ∈ C. Before discussing the algorithm in
detail, we briefly explain how to project a configuration to a
constraint.

A. Projecting a configuration to a constraint

A configuration q is projected to a constraint c by first
computing the configuration’s displacement ∆x to c. This
displacement can exist in an arbitrary space (commonly task
space) as long as a Jacobian is available to map displace-
ments in C-space to this space. For instance, for a task space
constraint, the displacement is the difference vector between
the current end-effector pose and the target pose.

Direct projection to meet a constraint c is then imple-
mented as a gradient descent (as shown in Alg. 1).

Apart from the primary constraint cprim that is the target
for projection and the start configuration qs, the gradient
descent is given a set Csec of secondary constraints, which
should be satisfied if possible. Csec consists of all constraints
in C except the primary one. We attempt to satisfy the
secondary constraints in the null-space of the primary con-
straint [2]. The Jacobians and displacements of the secondary
constraints are stacked in Jsec and ∆xsec, respectively.

When obtaining the displacements ∆x and ∆xsec, the
getDisplacement function is given the step sizes δprim and
δsec, respectively. The displacements are clamped to the
step size if they are longer. The projection fails if ||∆x||
increases and stalls if the change in ∆x is smaller than a
certain threshold. Both conditions are accounted for by the
NotStalledOrFailed Function in Alg. 1.

B. The Constellation algorithm

A common approach to finding a configuration in the
intersection of several constraint manifolds is to perform
direct projection as described above. However, if the ini-
tial configuration is far from the intersection of constraint
manifolds, the projection can fail to find a solution that
satisfies all constraints due to opposing gradients for the
various constraints, joint-limits, or singularities.

437

Instead of trying to solve the problem using a single direct
projection, the Constellation algorithm (Alg. 2) iteratively
grows a graph G out of the projections of guess configura-
tions. The graph is then used to find a promising next guess,
whose projections again extend the graph.

The Constellation algorithm (Alg. 2) begins by generating
k random configurations in the D dimensional C-space and
applying direct projections to those configurations using a
different c as the primary constraint for each projection. A
direct projection is only considered successful if it results in a
configuration that meets the primary constraint (note that the
resulting configuration may satisfy other constraints as well).
The configurations generated by successful direct projections
are added as nodes to a graph G (Alg. 3). After inserting
these nodes, the algorithm creates edges between nodes using
the method described in Alg. 4, the main idea being to
connect nodes that satisfy different sets of constraints. The
algorithm then finds the cycle of minimum length in the
graph such that each constraint in C is met by at least one
node in the cycle. This cycle marks a region where the
constraint manifolds lie closer together than at any other
place (according to the algorithm’s current knowledge of
the space), thus we would like to explore this area further.
Constellation then computes a guess configuration using
the nodes of this cycle (Alg. 5) and repeats the above
process to generate more nodes. This procedure repeats until
a direct projection produces a configuration that satisfies
all constraints, the algorithm has considered all cycles in
the graph, or the time limit is reached. A flowchart of the
algorithm is shown in Fig. 2 and an example run of the
algorithm is depicted in Fig. 3.

C. Balancing Exploration and Exploitation

As in most search algorithms, we need to balance explo-
ration and exploitation; i.e. how much Constellation searches
unexplored areas of the space vs. how much it searches near
promising areas that have been explored previously. Our
method for balancing these two aspects is encoded in the
getShortestCycle function.

To avoid over-exploitation (i.e. choosing the same or sim-
ilar cycles repeatedly), the getShortestCycle function main-
tains two blacklists: a cycle blacklist and a node blacklist.
After a cycle is processed by Constellation, it is added to the
cycle blacklist and its nodes are added to the node blacklist.
The getShortestCycle function then selects the shortest cycle
that is not in the cycle blacklist and does not contain a node
in the node blacklist. If there is no cycle that contains no
blacklisted nodes, the node blacklist is cleared (this allows
Constellation to explore near promising previously-explored
areas). If all cycles in G have been blacklisted, Constellation
returns failure.

D. Generating the next guess

The method that generates the next guess configuration is
a key component of Constellation and heavily influences the
performance of the algorithm. All calculations that are nec-
essary to derive the next guess from a cycle are encapsulated

Algorithm 2: Constellation(C, k)

G← {}1

i← 12

while TimeRemaining() do3

if i ≤ k then4

q ← randomSample()5

i← i+ 16

end7

else8

Z ← getShortestCycle(G)9

if Z = NULL then10

return NULL11

end12

q ← generateNextGuess(Z, C)13

end14

qres ← addSampleProjections(G, C, q)15

if qres 6= NULL then16

return qres17

end18

end19

return NULL20

Start

q ← randomSample()

j ← 0

qp,j ← projectToConstraint(q, cj, C \ {cj})

isSolution(qp,j) Success
yes

addNode(G, n(qp,j))

no

j < |C| yes

j ← j + 1

i < k

no

Z ← getShortestCycle(G)
q ← generateNextGuess(Z,G)

no

yes

i← i+ 1

addSampleProjections(G, C, q)i← 0

∀j < |C| : connectNearestNeighbors(G, C, n(qp,j))

Fig. 2. Flowchart of the Constellation algorithm.

in the generateNextGuess function and thus can be replaced
easily.

The method presented here is based on the Downhill
Simplex Algorithm (or Nelder-Mead Algorithm) for the
optimization of multi-dimensional non-linear functions [5].
To apply this algorithm, we treat the configurations of the
nodes of a given cycle as samples of a cost function. The
cost function value at a node’s configuration is the sum
of the displacements to each constraint1, thus the cost at
a configuration which satisfies all constraints would be zero.

1These displacements are calculated in the space of each constraint, for
instance in task space for end-effector pose constraints.

438

A

B
C

(a)

A

B
C

(b)

A

B
C

(c)

A

B
C x

(d)
Fig. 3. The Constellation algorithm attempting to find the intersection
of the constraint manifolds A, B and C in C-space. Note that there is no
guarantee that projections find the closest point on the manifold to the
starting configuration. (a) The initial guess configuration is projected to the
manifolds A, B and C. The guess configuration is shown in yellow, and
graph nodes are shown in black. (b) Each node connects to the closest
node on each constraint it does not satisfy. The graph has only one cycle,
which is now used to determine the next guess. (c) The resulting nodes
of projections from the guess configuration are inserted into the graph and
connected as in (b). The previous cycle and its nodes are blacklisted (shown
in gray). The new cycle of minimal length that contains no blacklisted nodes
is highlighted. (d) A new guess is generated and projected to the manifold
C, which produces a configuration in the intersection of all manifolds, thus
solving the problem.

An iteration of the downhill simplex algorithm can then be
applied to try to generate a new lower-cost configuration, i.e.
one closer to the intersection of all constraints.

This method (shown in Alg. 5) reflects the configuration
nq of the worst node n (i.e the node with the highest cost,
as computed by Alg. 6) of the cycle Z through the weighted
average of the configurations of the other cycle nodes Z\{n}.
An example of how a next guess configuration is generated
is depicted in Fig. 4.

The last component of the generateNextGuess method to
discuss is the way the weighted average of a set of nodes is
computed. If we simply average the nodes’ configurations
without any weighting, each node would have the same
influence on a joint-value in the average, regardless of this
joint being used in projecting to the given constraint.

To see why this is a problem, let us consider an example
problem where we have two simultaneous constraints: A pose
constraint for the left hand and a pose constraint for the right
hand. The left arm’s joints are not important to project to

A

B
C x

n1

n2

n3

Fig. 4. Determining the next guess from a cycle consisting of the nodes
n1, n2 and n3. Node n3 is the worst node according to the sum of
the displacement lengths to the constraints A, B and C. To determine
the next guess configuration, the worst node n3 is reflected through the
weighted average of the cycle’s other nodes n1 and n2. Projecting the
guess configuration to constraint A then solves the problem.

Algorithm 3: addSampleProjections(G, C, q)

N ← {}1

for c ∈ C do2

qp ← projectToConstraint(q, c, C \ {c})3

if qp 6= NULL then4

if isSolution(qp) then5

return qp6

end7

addNode(G,n(qp))8

N ← N ∪ n(qp)9

end10

end11

for n ∈ N do12

connectNearestNeighbors(G, C, n)13

end14

return NULL15

the right hand constraint. Thus the corresponding columns
in the Jacobians used in the projection would be zero and
hence the left arm’s joint values would be unchanged during
the projection to the right hand constraint (ignoring the null-
space component). The next guess configuration would be
biased toward these unchanged joint values if we simply
averaged all configurations within the cycle. This would be
a problem because the left arm’s joints would be pulled
back toward their initial values by the node that satisfies
the right arm constraint and the right arm’s joints would
be pulled back similarly by the node that satisfies the left
arm constraint. To prevent this problem, we try to decrease
the influence of unchanged joint-values by using a weighted
average, as shown in Alg. 7.

The weightedAverage method considers the sum of all
Jacobians that were necessary to project a configuration to
a certain constraint. This Jacobian sum is then stored in the
resulting node’s meta-information. Note that the calculation
of the Jacobian sum is not shown in Alg. 1 to improve
readability.

To compute the weighted average, we consider each node
of the given set N and retrieve the corresponding Jacobian
sum. A column of the Jacobian sum J∗i captures the con-

439

Algorithm 4: connectNearestNeighbors(G, C, n)

for c ∈ C do1

if not satisfiesConstraint(n, c) then2

m← getClosestSatisfyingNode(G, c, n)3

addEdge(G, e(n,m))4

end5

end6

Algorithm 5: generateNextGuess(Z, C)

n← getWorstNode(Z, C)1

q ← weightedAverage(Z \ {n})2

return q + (q − nq)3

Algorithm 6: getWorstNode(Z, C)

w ← {}1

dmax ← 02

for n ∈ Z do3

d← 04

for c ∈ C do5

d← d+getDisplacement(n, c)6

end7

if d > dmax then8

w ← n9

dmax ← d10

end11

end12

return w13

tribution of one joint while the norm of this column ||J∗i||
is considered as a measure for the importance of joint i for
the projection resulting in node n. We then weigh each joint
value by its importance and the reciprocal of the sum of
all importances of the current node before adding it to the
accumulator b. weightedAverage then returns the weighted
average after all nodes’ contributions have been considered.

IV. CONSTRAINTS

To apply the Constellation algorithm, we must be able
to perform Alg. 1 on a given constraint. Thus, for each
type of constraint, we must have a method to calculate 1) a
displacement to the constraint and 2) a Jacobian that maps
displacements in C-space to displacements in the space of
the constraint.

In this section, we will discuss three example constraints
that we implemented and used together with the Con-
stellation algorithm: a modified TSR constraint, a balance
constraint, and a collision constraint.

A. The Modified TSR Constraint

A Task Space Region (TSR) is a volume in the task space
that the robot’s end-effector has to be placed in to satisfy
the constraint [1]. We briefly summarize how to compute
the displacement to a TSR below.

Algorithm 7: weightedAverage(N)

b← 01×D1

s← 01×D2

for n ∈ N do3

J← getJacobianSum(n)4

a←∑D
i=1 ||J∗i||5

for i ∈ {1, · · · , D} do6

si ← si + 1
a · ||J∗i||7

bi ← bi + 1
a · ||J∗i|| · nqi8

end9

end10

for i ∈ {1, · · · , D} do11

bi ← bi
si

12

end13

return b14

Throughout this section, we will be using transformation
matrices of the form Ta

b , which specifies the pose of b in the
coordinates of frame a.

A TSR consists of three parts:
• T0

w: transform from the origin to the TSR frame w
• Tw

e : end-effector offset transform in the w frame
• Bw: 6× 2 matrix of bounds in the coordinates of w:

Bw =


xmin xmax

ymin ymax

zmin zmax

ψmin ψmax

θmin θmax

φmin φmax

 (1)

The first three rows of Bw bound the allowable translation
along the x, y, and z axes (in meters) and the last three bound
the allowable rotation about those axes (in radians), all in
the w frame. The Roll-Pitch-Yaw (RPY) Euler convention is
used for the rotational bounds.

Given a TSR, [1] describes how to compute the task
space displacement ∆x to that TSR. The Jacobian for the
TSR constraint is simply the Jacobian of the end-effector it
corresponds to.

If we project to a TSR from a configuration which is close
to satisfying the constraint and we are not concerned with a
rotation dimension of the task space (for instance, the hand’s
yaw around a cylinder), we can set the rotation bounds to
−π and π. The task space displacement for this component
would then always be zero, which forces a projection to keep
the yaw value of the starting pose.

However, since Constellation projects to TSRs from dis-
tant configurations, we have found that allowing more free-
dom yields better results. When a dimension of task space is
totally unconstrained, we take the corresponding components
out of the task space displacement and the Jacobian, thus
allowing full freedom in the unconstrained dimension.

B. The Balance Constraint

The second type of constraint we consider is the balance
constraint, which is satisfied if the robot’s center of gravity—
projected to the ground—lies in the support polygon of the

440

robot. For a humanoid, the support polygon would be the
region under and in-between the feet. A detailed discussion
of the balance constraint can be found in [8].

Let li represent the ith link of the robot, and let mi

and xcogi represent that link’s mass and center of gravity,
respectively. The robot’s center of gravity is

xcog =
1∑N

i=1mi

N∑
i=1

mi · xcogi , (2)

where N is the total number of links. Let S represent the
robot’s support polygon and let the function P : R2 → S be
the projection of a point x ∈ R2 to its closest point in S.

The displacement ∆x for the balance constraint is the
negative vector from xcog to its closest point in the sup-
port polygon (Note that this operation is done in the two
dimensional ground plane, thus the z-component of xcog is
not considered):

∆x = [xcogx
, xcogy

]T − P ([xcogx
, xcogy

]T). (3)

The Jacobian for the balance constraint is computed similarly
to the center of gravity:

J =
1∑N

i=1mi

N∑
i=1

mi · Jli(xcogi), (4)

where Jli(xcogi) represents the Jacobian for the center of
gravity of the i-th link.

C. The Collision Constraint

Our approach to computing the displacement and Jacobian
for collision constraints is similar to that used in CHOMP
[21], which attempts to maximize a configuration’s distance
to obstacles.

Let R(q) ⊆ R3 be the space occupied by the robot at the
configuration q. Let O ⊆ R3 represent the space occupied by
obstacles in the scene. Let C(q) = R(q)∩O. A displacement
which, when applied, will satisfy this constraint will move all
points in C(q) outside of O. We use a voxel grid along with
a Signed Distance Field (SDF) to approximately compute
such a displacement:

Before running Constellation, we voxelize the environment
(producing a voxel grid V) and sample a set of points X
within the volume of the robot (see Fig. 5). We also compute
an SDF over V , which produces a value S(v) for each voxel
grid cell v ∈ V . S(v) stores the distance from the center
of cell v to the boundary of the nearest obstacle. Values of
S are negative inside obstacles, positive outside, and zero at
the boundary.

When the robot is placed in a configuration q, we use
forward kinematics to determine where the points X are
located. For each point xi ∈ X , we compute the voxel
grid cell vi that contains the point. If S(vi) is negative, we
compute the displacement ∆xi as the difference in S value
between voxels neighboring vi along each spatial dimension.
We can then stack the displacements to produce

∆x =
[
∆xTi ,∆x

T
i+1, ...

]T
. (5)

Fig. 5. Left: The set of collision points. Right: Voxelized refrigerator.

To compute the Jacobian for the collision constraint, we
first compute a Jacobian J(q, xi) for each xi that yields a
negative S(v) value. We can then stack Jacobians to produce

J =

 J(q, xi)
J(q, xi+1)

...

 . (6)

V. RESULTS

We now present the results of several test scenarios in
which we compare Constellation to direct projection, cyclic
projection, and cyclic projection with null-space. In the
evaluations, we use an enhanced model of the humanoid
ARMAR-III with 33 DOF as shown in Fig. 1 perform-
ing reaching tasks in two types of scenes. All results for
Constellation were generating using k = 10 initial random
configurations on an Intel i7 870 2.93 GHz CPU with 3.5
GB RAM.

A. Test Setup

We try the direct projection approach with each constraint
as the primary target while attempting to satisfy the other
constraints in the null-space. To be fair in comparing direct
projection to Constellation, we try this method using each
constraint as the primary target for all k random configura-
tions that are used to initialize Constellation. The approach
is considered to be successful if any of these attempts results
in a configuration that meets all constraints.

The cyclic projection method iteratively projects a starting
configuration to a repeating sequence of constraints. This
projection does not use the null-space. The constraint order is
randomly determined at the beginning of a run and then kept
unchanged until the run is finished. The null-space variant of
cyclic projection (cyclic-ns) differs from the cyclic method
in that it uses the projection method of Alg. 1, which uses
the null-space.

Table I lists and explains the constraints that are used in
the test scenarios. The tolerance for meeting a constraint ε
was set to 0.001 for all examples. The step sizes required
by the projection algorithm (Alg. 1) were set as follows:
δprim = 0.015 for the collision constraint and 0.2 for other
constraints. δsec = 0.015.

441

(a) (b) (c) (d) (e) (f)
Fig. 6. Example configurations found by Constellation for each type of test scene. (a)-(d) Reaching tasks for shelves 1-4, respectively. (e) Randomly-
generated scene with 7cm spheres (f) Randomly-generated scene with 2cm spheres.

Name Definition
Balance The robot must be in balance, i.e. its center of gravity

must be above the support polygon.
Collision The scene contains obstacles that must not intersect the

robot.
Grasp A cylinder in the scene has to be grasped with the right

hand. The TSR for this constraint allows the grasp to
rotate freely around the z-axis of the cylinder.

Stand The robot kinematics are rooted at the right foot. The
TSR for this constraint requires the left foot to be placed
near the right foot with the same orientation.

TABLE I
CONSTRAINTS USED IN THE TEST SCENARIOS

B. Reaching into a Refrigerator

First, we compare the performance of the algorithms on
a scene where ARMAR must reach into a refrigerator to
retrieve an object placed randomly on one of four shelves.
Different shelves of the refrigerator induce problems of
varying difficulty. For instance, reaching to retrieve an object
on the bottom shelf requires the robot to crouch and extend
its arm, which causes opposing gradients for the balance
and grasp constraints (see Fig. 6d). However, reaching for
an object on the top shelf is fairly straightforward because
there is a great deal of space for the arm and the balance
constraint can be easily satisfied (see Fig. 6a).

We ran all four algorithms with 100 random seeds for
each shelf. We used a timeout of 1200s for all methods. All
algorithms run until they fail, succeed, stall, or reach this
timeout value. To initialize each algorithm we use the start
configuration depicted in Fig. 5 and add a small random
offset in C-space with a length of 0.1rad.

The percent success and average runtimes are shown in
Table II. These results confirm that there are many cases
(shelves 3 and 4) where direct projection rarely succeeds
or does not succeed at all. Cyclic and cylic-ns perform
better in terms of the success rate but Constellation has the
best success rate for all shelves. Note that Constellation’s
runtime for shelves 3 and 4 was quite high compared to
the others. This is because some of the instances of these
problems were very difficult and, while the other methods
failed, Constellation simply took longer to find a solution.

Shelf Direct Cyclic Cyclic-ns Constellation
1 84% (11.8) 99% (19.3) 100% (8.61) 100% (34.8)
2 69% (6.91) 67% (14.6) 93% (10.6) 100% (33.2)
3 8% (13.0) 57% (8.67) 89% (11.1) 96% (239)
4 0% (-) 19% (6.21) 89% (45.6) 93% (476)

TABLE II
TEST RESULTS FOR THE REFRIGERATOR EXAMPLE: PERCENT SUCCESS

AND RUNTIME IN PARENTHESES (IN SECONDS). ONLY RUNTIMES OF

SUCCESSFUL RUNS ARE USED IN COMPUTING THE AVERAGE.

Fig. 7. Percent success and average runtime for solvable scenes of the
sphere tests. Runtime averages were computed over successful runs of each
algorithm. Black: Constellation, Blue: Cyclic-ns, Magenta: Cyclic, Red:
Direct projection.

C. Reaching in Randomly-Generated Scenes

We also compare the performance of the algorithms on
randomly-generated scenes of varying complexity. In these
scenes the robot’s task is to reach for an object while
avoiding spherical obstacles placed around its body (see Fig.
6). We tested each algorithm over scenes containing varying
numbers of obstacles. Our goal with these experiments is
to see how the algorithms scale with the complexity of the
collision constraints.

Each level of complexity, determined by the number of
obstacle spheres in the scene, is tested with 100 random
seeds. One run, i.e. a certain level of complexity together
with a certain random seed, is then performed for each of
the four algorithms. Initial configurations are computed using

442

the same method as the previous example. We used a timeout
of 600s for all methods.

To test the algorithms’ performance with different kinds of
obstacle distributions, we evaluated two types of randomly-
generated scenes: one with spheres of radius 7cm and the
other with radius 2cm. The spherical obstacles were placed
at random positions between the robot and the object to
grasp. Obstacles were not allowed to intersect with a certain
area around the robot and the object to avoid unsolvable
scenes as much as possible. Nevertheless unsolvable scenes
are possible and likely. We consider a scene to be solvable
if any of the tested methods succeeded.

Fig. 7 shows the results of the tests described above. Since
a scene which cannot be solved by any of the considered
methods gives no information on which method is superior,
the percentages given in the Fig. 7 are relative to the number
of solvable scenes, not to the total number of tested scenes.

The results show that Constellation consistently outper-
forms the other approaches in terms of percent success.
Making use of the null-space in cyclic projection consid-
erably improves the results of the cyclic approach. However,
though cyclic-ns runs faster than Constellation, Constellation
achieves a higher success rate in all tested scenes. For the
highest number of 7cm spherical obstacles, the percentage of
scenes that are solved by Constellation, but not by cyclic-ns
reaches 17%. Cyclic projection without null-space and direct
projection solve about half of the scenes Constellation solves
at the highest level of complexity for the 7cm test.

In the 2cm test, Constellation achieves between 97% and
100% success in all scenes, while the success rate of cyclic-
ns decreases significantly as the complexity of the scenes
increases. Cyclic-ns only achieves 81% success in the most
difficult scene for the 2cm test.

VI. CONCLUSION

The structure of humanoid robots and the tasks they are
expected to perform can severely restrict the feasible robot
configurations to a small or even lower-dimensional set. We
approach the problem of generating configurations in this set
by searching for a point in the intersection of all constraint
manifolds in C-space. Starting with an initial guess, our
algorithm, Constellation, builds a graph in the C-space whose
nodes are configurations that satisfy one or more constraints
and whose cycles determine where the algorithm explores
next. Since Constellation uses direct projection to generate
nodes, all problems that can be solved by a single direct
projection from the initial guess will be solved by Constella-
tion. We evaluated four approaches, including Constellation,
on reaching tasks for a 33 DOF humanoid. We find that
Constellation performs the best in terms of the number of
solved queries across a wide range of problem difficulty.
However, this success comes at higher computational cost.

VII. ACKNOWLEDGEMENTS

This work was partially conducted within the German
Humanoid Research project SFB588 funded by the German

Research Foundation (DFG: Deutsche Forschungsgemein-
schaft) and the International Center for Advanced Commu-
nication Technologies (interACT).

REFERENCES

[1] D. Berenson, S. Srinivasa, and J. Kuffner, “Task space regions: A
framework for pose-constrained manipulation planning,” International
Journal of Robotics Research (IJRR), vol. 30, no. 12, pp. 1435–1460,
October 2011.

[2] S. Sentis and O. Khatib, “Synthesis of whole-body behaviors through
hierarchical control of behavioral primitives,” International Journal of
Humanoid Robotics, vol. 2, pp. 505–518, December 2005.

[3] T. Asfour, P. Azad, N. Vahrenkamp, K. Regenstein, A. Bierbaum,
K. Welke, J. Schröder, and R. Dillmann, “Toward Humanoid Manip-
ulation in Human-Centred Environments,” Robotics and Autonomous
Systems, vol. 56, pp. 54–65, January 2008.

[4] N. Tsakarakis, G. Metta, G. Sandini, D. Vernon, R. Beira, F. Becchi,
L. Righetti, J. Santos-Victor, A. Ijspeert, M. Carrozza, and D. Cald-
well, “iCub - The Design and Realization of an Open Humanoid Plat-
form for Cognitive and Neuroscience Research,” Journal of Advanced
Robotics, vol. 21, no. 10, pp. 1151–1175, 2007.

[5] J. A. Nelder and R. Mead, “A simplex method for function minimiza-
tion,” Computer Journal 7, pp. 308–313, 1965.

[6] P. Combettes, “The foundations of set theoretic estimation,” Proceed-
ings of the IEEE, vol. 81, no. 2, pp. 182–208, Feb. 1993.

[7] L. Sciavicco and B. Siciliano, Modeling and Control of Robot Manip-
ulators, 2nd ed. Springer, 2000, pp. 96–100.

[8] T. Sugihara and Y. Nakamura, “Whole-body cooperative balancing of
humanoid robot using COG jacobian,” in Proc. IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), 2002.

[9] O. Khatib, “A unified approach for motion and force control of robot
manipulators: The operational space formulation,” IEEE Transactions
on Robotics and Automation, vol. 3, no. 1, pp. 43–53, 1987.

[10] J. Kuffner, S. Kagami, K. Nishiwaki, M. Inaba, and H. Inoue,
“Dynamically-stable motion planning for humanoid robots,” Au-
tonomous Robots, vol. 12, no. 1, pp. 105–118, 2002.

[11] X. Tang, S. Thomas, and N. M. Amato, “Planning with Reachable
Distances : Fast Enforcement of Closure Constraints,” in Proc. IEEE
International Conference on Robotics and Automation (ICRA), 2007.

[12] J. Cortes and T. Simeon, “Sampling-based motion planning under kine-
matic loop-closure constraints,” in Proc. Workshop on the Algorithmic
Foundations of Robotics (WAFR), 2004.

[13] L. Han, L. Rudolph, S. Dorsey-Gordon, D. Glotzer, D. Menard,
J. Moran, and J. R. Wilson, “Bending and Kissing : Computing Self-
Contact Configurations of Planar Loops with Revolute Joints,” in Proc.
IEEE International Conference on Robotics and Automation (ICRA),
2009.

[14] X. Tang, S. Thomas, P. Coleman, and N. M. Amato, “Reachable
Distance Space: Efficient Sampling-Based Planning for Spatially Con-
strained Systems,” The International Journal of Robotics Research,
vol. 29, no. 7, pp. 916–934, Jan. 2010.

[15] K. Yamane, J. Kuffner, and J. Hodgins, “Synthesizing animations of
human manipulation tasks,” in SIGGRAPH, 2004.

[16] M. Stilman, “Task constrained motion planning in robot joint space,”
in Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2007.

[17] J. H. Yakey, S. M. LaValle, and L. E. Kavraki, “Randomized path plan-
ning for linkages with closed kinematic chains,” IEEE Transactions
on Robotics and Automation, vol. 17, no. 6, pp. 951–958, 2001.

[18] Z. Yao and K. Gupta, “Path planning with general end-effector
constraints: using task space to guide configuration space search,” in
Proc. IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2005.

[19] A. Escande and A. Kheddar, “Contact planning for acyclic motion
with tasks constraints,” in Proc. IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2009.

[20] A. Neumaier, “Complete Search in Continuous Global Optimization
and Constraint Satisfaction,” Acta Numerica, pp. 1–94, 2004.

[21] N. Ratliff, M. Zucker, J. A. Bagnell, and S. Srinivasa, “CHOMP:
Gradient optimization techniques for efficient motion planning,” in
Proc. IEEE International Conference on Robotics and Automation
(ICRA), May 2009.

443

