
Synthesizing Object Receiving Motions of Humanoid Robots

with Human Motion Database

Katsu Yamane1, Marcel Revfi2, and Tamim Asfour2

Abstract— This paper presents a method for synthesizing
motions of a humanoid robot that receives an object from a
human, with focus on a natural object passing scenario where
the human initiates the passing motion by moving an object
towards the robot, which continuously adapts its motion to the
observed human motion in real time. In this scenario, the robot
not only has to recognize and adapt to the human action but
also has to synthesize its motion quickly so that the human
does not have to wait holding an object. We solve these issues
by using a human motion database obtained from two persons
performing the object passing task. The rationale behind this
approach is that human performance of such a simple task is
repeatable, and therefore the receiver (robot) motion can be
synthesized by looking up the passer motion in a database. We
demonstrate in simulation that the robot can start extending
the arm at an appropriate timing and take hand configurations
suitable for the object being passed. We also perform hardware
experiments of object handing from a human to a robot.

I. INTRODUCTION

Cooperative manipulation between a robot and a human is

an essential skill for household robots. Among a wide range

of tasks that can be categorized as cooperative manipulation,

we are interested in human-to-robot object passing with a

style similar to human-to-human passing (Fig. 1) where the

human first starts moving the object towards the robot, which

then reaches out its hand to receive the object. We assume

that, for anthropomorphic robots, human-like motions are

more user-friendly because of the familiarity even though

they may not be optimal with respect to physical measures.

While humans can easily receive an object in this manner,

it would be very challenging for a robot because of a few

reasons. First, because the action is initiated by the human,

the robot has to correctly recognize the beginning of the

passing action. Second, the goal location of the hand is not

given in advance and has to be determined by observing

the human motion. Lastly, the planning has to be performed

quickly so that the human does not have to wait for the

robot’s hand to come close enough for hand-off.

We solve these problems by applying a human motion

database, assuming that human-to-human object passing is

repeatable when the relative position and orientation of the

two humans are similar, and therefore we can infer an appro-

priate receiver motion by observing the passer motion. If this

is the case and we have a library of human-to-human object

passing motions, we can use a “table lookup” approach to

pull up the typical receiver motion that corresponds to an

1K. Yamane is with Disney Research, Pittsburgh.
kyamane@disneyresearch.com

2M. Revfi and T. Asfour are with Karlsruhe Institute of Technology.
marcel@revfi.de, asfour@kit.edu

Fig. 1. Natural human-to-human object passing motion.

observed passer motion. Unfortunately, the table is usually

too large to look up in realtime and therefore requires a

sophisticated data structure and search algorithm.

In this paper, we employ a hierarchical database structure

developed in [1] to solve the database size issue. The

structure incorporates the features of database structures de-

veloped in information theory, animation, and robotics: 1) the

observed poses are organized into the binary-tree structure

for efficient search, 2) the nodes at the same depth are

connected as a directional graph structure similar to motion

graphs [2], [3], and 3) each node and edge are associated

with pose distribution and transition probability respectively,

similarly to Hidden Markov Models (HMMs) [4]–[6].

The original database structure only addressed the problem

of storing and searching for motions of a single subject. We

therefore make a few modifications to make it suitable for our

application of synthesizing human-to-robot object passing

motions as described in Section IV. Firstly, the database

is now constructed from two-subject motion capture data,

where a first subject passes an object to a second subject.

Secondly, the binary tree is generated based on the passer’s

example motions instead of both subjects so that we can

efficiently search the database only using the passer motion

as the key. By building the database in this way, we can

synthesize the robot’s motion by 1) observing the passer

human motion by, for example, a vision system, 2) finding a

node sequence that matches the observation from the motion

database with an improved search algorithm (Section V-B),

and 3) computing the robot’s motion based on the node

sequence found in the previous step (Section V-C).

II. RELATED WORK

Human-robot cooperative manipulation has been studied

in a few different forms. One form is carrying a large

object together [7]–[9], where the research focus has been on

estimating the human intention and controlling the robot to

follow the human while compensating for unexpected noise.

Another form is passing an object to a human. Sisbot et

al. [10], for example, developed a motion planning algorithm

2013 IEEE International Conference on Robotics and Automation (ICRA)
Karlsruhe, Germany, May 6-10, 2013

978-1-4673-5643-5/13/$31.00 ©2013 IEEE 1629

that allows a robot to hand an object in such a way that the

human does not feel uncomfortable or threatening.

This paper focuses on yet another task where a robot

receives an object from a human. Edsinger et al. [11]

implemented two scenarios for this task, but they required the

user to follow specific protocols. Micelli et al. [12] addressed

the problem of realizing more natural human-to-robot object

passing. We also have the same goal, but our approach takes

advantage of prior knowledge on human-to-human object

passing behavior, which may relax some of the sensing and

perception challenges mentioned in [12].

Part of the human motion database developed in [1] has a

structure often referred to as motion graphs [2]. Furthermore,

the motion synthesis algorithm, which is our new contri-

bution, interpolates the states of multiple nodes to obtain

better results, similarly to the work by Safonova et al. [3]

for motion synthesis of a single character.

While our work primarily focus on human-to-robot object

passing, it has close relationship with existing methods for

modeling the correlation between motions of human and

robot or different body parts. Takano et al. [4] presented an

HMM-based method for learning interactive behaviors from

motion capture data of two humans. Lee et al. [5] developed a

learning algorithm where a robot can imitate human motions

by observing only a part of the human body based on the

prior knowledge of human whole-body motions. It was later

extended to active learning of physical interaction between a

human and a robot [6]. Shukla et al. [13] proposed a method

for learning correlation between different parts of the body

using coupled dynamical systems.

III. OVERVIEW OF THE ORIGINAL DATABASE

This section reviews the database structure and search

algorithm originally presented in [1].

A. Database Structure (Fig. 2)

Assume that we have one or more sample motion clips

from motion capture or keyframe animation, and they are

represented as state-space trajectories (the curves in the top

figure). By sampling the trajectories at a fixed time step,

we obtain a collection of sample states (the dots in the top

figure). Starting from the top layer with a single cluster

including all sample states, we iteratively generate a new

layer by dividing each cluster into two as shown in the

bottom left figure, where each cluster is represented by a

gray oval depicting the mean and covariance matrix of the

sample states in the cluster. This clustering method naturally

generates a binary tree (bottom right figure) whose nodes

correspond to the clusters. This structure allows efficient

database search as described in Section III-B.

Once we know which samples belong to which node at

each layer, we can connect the nodes with directed edges

that represent the possible transitions among the nodes (black

arrows in the bottom left figure). The nodes and edges in a

single layer form a motion graph. We can also compute the

transition probability of each edge by dividing the number

clip 2

clip 1

clip 3

state space

layer 2

layer 3

layer 1

binary treemotion graphs

sample clips

..
.

Fig. 2. Database structure. Top: sample motion trajectories represented in
the state space. Bottom left: hierarchy of layers and motion graphs. Bottom
right: binary tree representing the node hieararchy.

of samples whose successors are in the destination node by

the total number of samples in the origin node.

In summary, a database contains the following data:

• The state distribution of each node, usually the mean

and covariance matrix assuming a Gaussian distribution.

• Parent-child relationship of the nodes in the binary tree.

• Transition probability of each edge.

The state space can be chosen to fit the properties of the

motions and/or the objective of the database. Following [1],

this work uses the Cartesian positions and velocities of

feature points (markers) as the state space. This state space

fits our objective because the hand position of the receiver,

rather than the joint angles, is critical to the task. To make the

database invariant to the horizontal location and orientation

of the motion, the feature point positions and velocities are

first normalized by translating and rotating each sample pose

so that the root link of the human model is at the same

location in the horizontal plane, facing the same direction.

B. Search Algorithm

For a given trajectory in the state space with r frames, the

search algorithm finds the node transition {N1, N2, . . . , Nr}
in a specific layer that minimizes the cost function

Z = −
r

∑

i=1

log PNi
(xi) −

r−1
∑

i=1

log T (Ni, Ni+1) (1)

where xi is the observed state at the i-th frame, Pk(x)
represents the likelihood that state x is generated from node

k, and T (i, j) is the transition probability from node i to j.

Minimizing Eq.(1) results in the node transition that has the

maximum likelihood of generating the given trajectory.

We illustrate the search algorithm using the example in

Fig. 3, where the goal is to find the optimal node transition

1630

N11

N11 N11 N11

N21

N31

N32

N33

N34

N22

N21 N21 N22

N21 N21 N21

N21 N22 N21

N21 N22 N22

N22 N21 N22

N22 N21 N21

N22 N22 N21

N33 N33 N31

N33 N33 N32

N33 N34 N31

N33 N34 N32

N34 N33 N31

N34 N33 N32

N34 N34 N31

N34 N34 N32

N33 N33 N33

N33 N33 N34

N33 N34 N33

N33 N34 N34

N34 N33 N33

N34 N33 N34

N34 N34 N33

N34 N34 N34

N22 N22 N22

layer 1

layer 2

layer 3

N11

N21

N31 N32 N33 N34

N22

Fig. 3. Database search. Left: the binary tree, center: motion graphs, and
right: possible node transitions.

in layer 3 for the trajectory with three frames shown as the

red dots in each of the three figures of the middle column.

The nodes in each layer are represented as Nij , where i is

the layer number and j is the node ID in that layer. The

binary tree structure of the nodes is shown in the left figure

of Fig. 3.

The search algorithm starts from the top layer and de-

scends the binary tree until it reaches the desired layer.

The optimal node transition at the top layer is obviously

{N11 → N11 → N11} because this layer conists of a single

node. In layer 2, each of the N11 nodes in the node transition

at layer 1 can evolve into either N21 or N22, which yields

23 = 8 possible node transitions shown in the middle row

of the left column. However, most of these transitions can

be eliminated by considering the probability of generating

each frame at the two nodes. In this particular case, we

can safely assume that the first and second frames are not

generated by node N21 because the probabilities computed

from the distribution of N21 are sufficiently small. We can

therefore remove six node transitions shown in gray from the

list, leaving only two possible node transitions.

We then proceed to layer 3. Because N21 has two de-

scendants N31 and N32 while the descendants of N22 are

N33 and N34, each of the two node transitions at layer 2

yield eight transitions shown in the bottom figure of the

right column. Again based on the probability distributions

of the nodes, we can conclude that the first frame can only

be generated by N33, the second frame by N33 or N34,

and the third frame by N31 or N34. We can further reduce

the number of possible transitions by eliminating those with

invalid transitions, such as that from N33 to N31. Having

only two remaining transitions, we can efficiently choose

the node transition that minimizes Eq.(1).

IV. DATABASE STRUCTURE FOR OBJECT PASSING

MOTION SYNTHESIS

This section describes the new database structure we

developed to adapt the original structure to our target task.

Previous work on motion graphs involved an optimization

process that maps intuitive user inputs, such as walk paths [2]

and start and goal configurations [3], to the character motion

that best matches the input. Therefore the input and output of

the optimization were both related to the character’s motion

space. In our work, on the other hand, they are in difference

spaces: the input is in the passer’s motion space and the

output is in the receiver’s motion space. We therefore have

to modify the way we construct the database.

We build a database for human-to-robot object passing

as follows (Fig. 4). We first record a number of examples

of human-to-human object passing. The difference from [1]

is that we do not use the entire two-person motion space

for clustering because the receiver motion is not available

while synthesizing the robot motion. Instead, we perform

the clustering based only on the passer’s sample states. The

mean and covariance matrix of the passer’s states included

in each node are stored as in the original database.

In order to synthesize the receiver’s motion, however, we

also have to maintain the receiver’s states corresponding to

the passer’s. After creating the binary tree and motion graphs

using the passer’s sample states, we compute and store the

mean and covariance matrix of the receiver’s states in the

frames included in each node. We will use this information

for extracting the receiver’s pose that corresponds to the

passer’s pose.

The information included in the new database is thus

summarized as follows:

• The distribution (means and covariance matrices) of the

passer and receiver sample states in each node.

• Parent-child relationship of the nodes in the passer’s

binary tree.

• Transition probability of each edge.

The last modification concerns the normalization of the

sample states. We normalize the sample states so that the

receiver’s root segment stays at the same horizontal location

and direction, although clustering is performed based on the

passer’s sample states. This normalization makes more sense

for our application because the receiver’s motion should

depend on the relative position and orientation of the passer

with respect to the receiver, which will be eliminated if we

normalize the samples using the passer’s root segment. It also

allows the use of on-board vision sensors that only gives the

human pose with respect to the robot body.

V. MOTION SYNTHESIS

We now describe the algorithm for human-to-robot object

passing motion synthesis based on the new database structure

presented in the previous section.

A. Overview

Figure 5 summarizes the motion synthesis algorithm. We

first observe the human passer’s motion data, represented as

1631

passerreceiver

passer

database

receiver

Fig. 4. Constructing a database for human-to-robot object passing.

a trajectory in the passer’s motion space (the thick red line).

We use this trajectory to search for the optimal node transi-

tion in the passer’s database (red ovals in the bottom figure,

Section V-B). We can then determine the corresponding node

transition in the receiver’s database (blue ovals). Once we

know the best-matching nodes in the receiver’s database, we

can interpolate the means of the relevant nodes to obtain

synthesized robot motion (thick blue line, Section V-C).

B. Sliding-Window Search

Although using longer sequence of observation generally

results in better search precision because we have more infor-

mation about the observed motion, it can be problematic for

applications that require online search because it takes more

computation time and the search result will not be updated

until the entire observation sequence becomes available. In

our application, this fact means that the robot cannot respond

to the human action quickly.

A naı̈ve solution for this issue is the sliding window

approach, where a fixed length of latest observation is used

for search at each frame. We can then consider the last node

of the optimal transition at each frame as the current state

of the observed motion. Unfortunately, the node transition

obtained by appending the last node from every window

may not be possible in the node transition graph because the

search at each window is performed independently of other

windows. This issue often happens when the observed human

motion is not close to any of the samples in the database.

Let us illustrate this issue by a simple example shown

in Fig. 6 with a database with four nodes N1 to N4. Suppose

we are searching the database with a window size of 3, and

we have observed a trajectory represented by the thick curve.

observed

human motion
synthesized

robot motion

node sequence

passer

database

receiver

weighted sum of

node mean states

Fig. 5. Motion synthesis algorithm overview. The robot first observes
the human motion, which is then sent to the database constructed from
the passer’s sample states. The search algorithm finds the node sequence
that matches the observed human motion. The node sequence is sent to the
receiver’s database, where the robot motion is synthesized by computing a
weighted average of the node mean states of the receiver’s database.

window i

frame i

i+1 i+2

i+3

window i+1

node N1

N2 N3

N4

Fig. 6. A case where inconsistency in node transitions may happen.

The four black dots represent the frames we focus on in

this example. Because the window size is 3, this example

concerns the two windows, indexed as i and i + 1, whose

frames are included in this four-frame period.

At window i, the optimal node transition is likely to be

{N1 → N2 → N2} because, although frame i+2 itself may

be closer to N3, transition to the same node (N2 → N2)

usually has higher transition probability than to a different

node (N2 → N3) because most of the neighboring frames

have similar states and therefore included in the same node.

In addition, the generation likelihood from either N2 or N3

is not particularly large and the difference is not enough

1632

for making up the lower transition probability. Similarly, the

search result at window i + 1 would be {N3 → N3 → N4}.

Given these results, the resulting node transition from frame

i+ 2 to i+ 3 would be N2 to N4, which is not a valid node

transition in the graph.

A workaround would be to use the last two frames of

window i, {N2 → N2}, as the node transition of the first

two frames of window i + 1, and only search for the last

node. Unfortunately, this method also has a problem that a

wrong search result at one window cannot be corrected at

later windows. In this example, the search result at window

i + 1 would be {N2 → N2 → N3}, which is clearly not a

good solution given the proximity of frame i + 3 to N4.

To solve these issues, we develop a new search algorithm

that incorporates the result from the previous window while

maintaining the ability to correct the previously found erro-

neous node transition if necessary. In contrast to the naı̈ve

approach, the new algorithm 1) stores a predefined number

of best node transitions at each window and 2) attempts to

find node transitions that are consistent with the result in the

previous window if possible. In Fig. 6, for example, assume

that the second best transition was {N1 → N2 → N3}. If

the search at window i+1 considers this transition, it would

be possible to obtain the most intuitively correct transition,

{N2 → N3 → N4}.

The new search algorithm is realized by adding a new

term to the cost function (1). At each window, we store the

m(> 1) best candidate transitions from the search result. Let

Zi,k (k = 1, 2, . . . ,m) denote the values of Eq.(1) of the m

candidate transitions at window i, and define Ẑi =
∑

Zi,k.

During the search at window i + 1, we add another term

in the cost function for the optimization. For each node

transition being considered in the optimization process, we

compare the first m − 1 frames of the transition with the

last m−1 frames of each of the previous candidates. If they

do not match the k-th candidate, we add Ẑi − Zi,k to the

cost function. This term takes a larger value if the transition

does not match with candidates with smaller cost function

value, and therefore biases the search result towards those

consistent with the better results in the previous window.

The new cost function for searching the optimal node

transition at window i + 1, Z ′
i+1, is

Z ′
i+1 = Zi+1 + wc

m
∑

k=1

Zc,k (2)

where Zi+1 is the value of Eq.(1) computed from the node

transition under consideration, wc is a user-defined weight,

and Zc,k denotes the cost for considering the node transition

consistency with the previous window and takes one of the

following values:

Zc,k =

{

0 if consistent

Ẑi − Zi,k if not consistent
(3)

depending on whether the first m−1 nodes matches the last

m − 1 nodes in the k-th candidate from window i.

Let us illustrate the new cost function term using the

previous example. In the “window i” column of Table I are

TABLE I

AN EXAMPLE OF NEW COST FUNCTION VALUE.

window i window i + 1

transition Zi transition
∑

Zc,k

N1 → N2 → N2 3 N3 → N3 → N4 15 + 13 + 8 = 36

N1 → N2 → N3 5 N2 → N3 → N4 15 + 0 + 8 = 23

N2 → N2 → N2 10 N2 → N2 → N3 0 + 13 + 0 = 13

three possible transitions for window i and their values of the

original cost function (1). The “window i + 1” column lists

three possible transitions at window i+1 and corresponding

values of the additional cost function term
∑

Zc,k, in the

ascending order of the original cost function values (not

shown in the table). Transition {N3 → N3 → N4} has the

largest cost function value 36 because the first two nodes

(N3 → N3) do not match any of the transitions from window

i, and therefore may fall behind the other two transitions that

have smaller cost function values (23 and 13). However, it

is still possible that it continues to be the optimal transition

even though it is not consistent with the results at window

i, depending on the cost function values of other transitions.

C. Robot Motion Synthesis

The database search algorithm described in the previous

section returns multiple node transition sequences that match

the latest few frames of the observed human motion. The

last nodes in these sequences therefore should be close to

the state which the passer is currently at. Furthermore, the

database now includes the receiver’s state distribution corre-

sponding to each node in the passer’s database as described

in Section IV. These extensions allow us to compute the

receiver’s pose by a simple interpolation as described below.

Let N denote the set of the last nodes of the m best

node transitions returned by the search algorithm, excluding

duplicates. We then use xi (i ∈ N) to represent the mean

states of the nodes in N . Also let x̂ denote the current

observed state of the passer (human). We determine the

weight wi for each of the mean state such that the weighted

sum of mean states becomes as close as x̂ by solving an

optimization problem with a quadratic cost function

ZW =
1

2
||x̂ −

∑

i∈N

wixi||
2 (4)

and inequality constraints wi ≥ 0 (∀i ∈ N) using numerical

optimization library SNOPT [14]. Finally, we use these

weights to compute the weighted sum of the mean states

at corresponding nodes in the receiver’s database.

VI. RESULTS

We first present detailed analysis of the database properties

using pre-recorded data in simulation, followed by results of

preliminary hardware implementation of the method. Please

also refer to the accompanying video.

1633

TABLE II

STATISTICS OF THE DATABASES USED IN THE EXPERIMENT.

configuration face-to-face side-by-side

of clips 15 10

marker set all arm all arm

of frames 1686 1686 863 863
of nodes 255 245 119 109
of layers 10 10 9 8

A. Database Setup

It would be interesting to investigate whether the database

can distinguish subtle differences in the observed motions.

We are particularly interested in whether the synthesized

robot motions adapt to the type of the object being trans-

ported. For this purpose, we prepared three object types: a

tape that will be held from the top in handing and from the

bottom in receiving, a bottle that will be held from the side

in both handing and receiving, and a bag whose handle will

be hung to the receiver’s hand.

We also tested two different standing configurations: face-

to-face and side-by-side. We captured examples with all three

objects for face-to-face configuration and with a bottle and

a bag for side-by-side. Examples from these configurations

are built into two separate databases assuming that the

configuration is known in advance.

We captured six instances of human-to-human passing

behavior for each object and configuration while the subjects

were standing at a distance of their choice. The subjects

were instructed to perform the passing motion as naturally

as possible. They were also told when the recording started,

but were not given any specific timing to start the action.

We then built the database using five of the six clips for

each object, and left one clip for the synthesis experiment. As

a result, we used 15 clips for the face-to-face database and 10

for the side-by-side database. We manually divided each clip

at the time when the hand-off took place and only included

the first half in the database. The length of segmented clip

ranged from 3.3 s to 4.5 s. The motion data were recorded

at 120 fps but were downsampled to 30 fps.

One of the features of the database presented in [1] is

that we can use different marker sets for motion capture and

clustering. We took advantage of this feature by applying

two different marker sets for clustering: the same marker set

as motion capture and a marker set that only includes the

arm markers. The former assumes that the passer’s whole

body motion is observable, while the latter considers a more

realistic scenario where only the arm pose is observable.

Table II summarizes the statistics of the four databases.

The parameters used in the following examples are a window

width of 0.1 s, wc = 0.1, and m = 10.

B. Search Time

We first demonstrate the scalability of the search algorithm

by comparing the search time with different window widths.

The computation time will also be affected by the number

of layers and the size of the state space. As shown in Fig. 7,

the search time increases mostly linearly with respect to the

0 0.05 0.1 0.15 0.2
0

5

10

15

20

25

30

35

40

45

window width

s
e

a
rc

h
 t
im

e
 (

m
s
)

face/all

face/arm

side/all

side/arm

(s)

1 2 3 4 5 6 7 (frames)

Fig. 7. Search time for the four databases.

TABLE III

MARKER POSITION ERRORS FROM GROUND TRUTH (×10−3M2).

object tape bottle bag

configuration face-to-face

database all arm all arm all arm

all markers 2.58 5.85 2.19 4.61 2.12 3.98
arm markers 9.04 9.46 10.3 9.78 5.99 5.37

configuration side-by-side

database all arm all arm all arm

all markers — — 1.48 1.75 0.252 1.10
arm markers — — 12.7 11.6 1.34 5.81

window width. It also remains under the sampling timestep

(1/30 s) up to the window width of 6 frames.

C. Evaluation of Synthesized Motions

We created the input data for the search algorithm by

extracting the passer’s motion from the clip that has been

left out from the database. The receiver’s motions in the

clips were then used in the evaluation as the ground truth.

Figure 8 shows snapshots from synthesized motions at

0.5 s interval when the human and robot are facing each

other. Snapshots for side-by-side configuration are shown in

Fig. 9. The poses were computed by an inverse kinematics

algorithm directly from the synthesized marker positions

using a humanoid robot model whose kinematics parameters

are different from the human subject. No clean up, such as

smoothing, was applied.

The rightmost column in Figures 8 and 9 shows the

closeup images at hand-off. Note that the hand configurations

at the end of the sequence correctly reflect the way each

object is passed. Also note that the robot (the figure on the

left) starts moving before the human reaches the location

where passing takes place.

We evaluate the synthesized motions by comparing with

the ground truth motions included in the test inputs. Table III

shows the error represented by the average squared distance

between a synthesized marker of the receiver and the corre-

sponding marker in the ground truth. The average was taken

during the last 0.5 s of the synthesized motion because the

poses closer to the hand-off are more critical for the task. As

1634

shown in the table, the errors only with the arm pose input

are larger than that when the whole body pose is used, but

the errors in the arm markers are comparable. This result

implies that reduced measurement focusing on the critical

part of the body may be enough for specific applications.

D. Hardware Implementation

We implemented the method on a humanoid robot with

upper body. The four joints in the left arm (three shoulder

joints and the elbow joint) were used for the reaching motion.

The hand was fixed at a half-gripped pose so that the user can

hang the object with a handle. To measure the user motion,

we used a real-time optical motion capture system [15] with

eight cameras using a simplified marker set consisting 13

markers in total (marker set H) attached to the trunk, upper

arm, lower arm, and hand.

Because we did not have accurate kinematics parameters

of the robot, we used a data-based inverse kinematics model.

We first measured the positions of 9 markers (marker set R)

attached to the robot’s trunk, upper arm, and lower arm at

various joint angle samples using the same optical motion

capture system. We then modeled the joint angles as a linear

interpolation of the samples with weights computed by radial

basis functions based on the desired marker positions [16].

The database was constructed using the face-to-face sam-

ples such that it uses marker set H for sample clustering

and search, and outputs the positions of the markers of R.

We therefore do not have to perform inverse kinematics

computation for the human. Furthermore, the robot’s hand

position roughly matches the receiver’s despite the difference

in the kinematics because we try to match the marker

positions rather than joint angles.

Snapshots from hardware experiment are shown in Fig. 10,

where the first frame corresponds to the time when the user

started moving his arm. We can observe that the robot started

moving its arm before the user reached his desired passing

location. Figure 11 shows a more interesting interaction

where the user teases the robot by extending and retracting

his arm a few times before handing the object.

VII. CONCLUSION

In this paper, we presented a method for synthesizing the

receiver’s motion in human-to-robot object passing tasks.

We applied a data-driven approach under the assumption

that human-to-human object passing behavior is repeatable

in similar situations. For this purpose, we extended an

existing human motion database to our target task that

requires different motion spaces for search and synthesis. We

also developed a new sliding-window search algorithm that

realizes realtime motion search with continuous observation

while ensuring that the resulting node transition is consistent

with the database. The experiments using real human motion

data demonstrated that the planner is capable of synthesizing

reaching motion of the robot with appropriate hand position

and orientation to receive objects of different grasp types.

The reaching motion also starts while the passer’s hand is

moving towards the location where hand-off takes place.

Several directions remain as future work. We would like

to perform tests on databases with wider variety of passing

motions including different distances between the passer and

receiver. Although the database will be significatly larger,

its hierarchical structure allows the search to be performed

at higher layers. Searching with coarser nodes would also

be useful to prevent the robot from reacting too quickly

especially at the earlier stage of the passing motion when the

robot is not sure if the human has actually started the passing

motion. Sensitivity of the algorithm to observation noise may

be an issue if we are to obtain the data without instrumenting

the human because the observed human motion is likely to

be contaminated by significant noise especially. For hard-

ware experiment, adding finger motions and other secondary

behaviors would be important to facilitate the hand-off and

make the motion more engaging.

ACKNOWLEDGEMENT

M. Revfi was supported by the International Center for

Advanced Communication Technologies (interACT).

REFERENCES

[1] K. Yamane, Y. Yamaguchi, and Y. Nakamura, “Human motion
database with a binary tree and node transition graphs,” Autonomous

Robots, vol. 30, no. 1, pp. 87–98, 2011.
[2] L. Kovar, M. Gleicher, and F. Pighin, “Motion graphs,” ACM Trans-

actions on Graphics, vol. 21, no. 3, pp. 473–482, 2002.
[3] A. Safonova and J. Hodgins, “Construction and optimal search of

interpolated motion graphs,” ACM Transactions on Graphics, vol. 26,
no. 3, p. 106, 2007.

[4] W. Takano, K. Yamane, K. Sugihara, K. Yamamoto, and Y. Nakamura,
“Primitive communication based on motion recognition and generation
with hierarchical mimesis model,” in Proceedings of IEEE Interna-

tional Conference on Robotics and Automation, Orlando, FL, May
2006, pp. 3602–3609.

[5] D. Lee and Y. Nakamura, “Mimesis model from partial observations
for a humanoid robot,” The International Journal of Robotics Re-

search, vol. 29, no. 1, pp. 60–80, 2010.
[6] D. Lee, C. Ott, and Y. Nakamura, “Mimetic communication model

with compliant physical contact in human-humanoid interaction,” The

International Journal of Robotics Research, vol. 29, no. 13, pp. 1684–
1704, 2010.

[7] K. Harada, S. Kajita, F. Kanehiro, K. Fujiwara, K. Kaneko, and
K. Yokoi, “Real-time planning of humanoid robot’s gait for force-
controlled manipulation,” IEEE/ASME Transactions on Mechatronics,
vol. 12, no. 1, pp. 53–62, 2007.

[8] M. Lawitzky, A. Mörtl, and S. Hirche, “Load sharing in human-
robot cooperative manipulation,” in Proceedings of IEEE International

Symposium on Robot and Human Interactive Communication, 2010,
pp. 185–191.

[9] A. Thobbi, Y. Gu, and W. Sheng, “Using human motion estimation
for human-robot cooperative manipulation,” in Proceedings of the

IEEE/RSJ International Conference on Intelligent Robots and Systems,
2011, pp. 2873–2878.

[10] E. Sisbot and R. Alami, “A human-aware manipulation planner,” IEEE

Transactions on Robotics, vol. 28, no. 5, pp. 1045–1057, 2012.
[11] A. Edsinger and C. Kemp, “Human-robot interaction for cooperative

manipulation: handing objects to one another,” in Proceedings of

IEEE International Symposium on Robot and Human Interactive

Communication, 2007, pp. 1167–1172.
[12] V. Micelli, K. Strabala, and S. Srinivasa, “Perception and control

challenges for effective human-robot handoffs,” in RGB-D Workshop,

Robotics: Science and Systems Conference, 2011.
[13] A. Shukla and A. Billard, “Coupled dynamical system based hand-

arm grasp planning under real-time perturbations,” in Proceedings of

Robotics: Science and Systems, 2011.
[14] P. Gill, W. Murray, and M. Saunders, User’s Guide for SNOPT

Version 7: Software for Large-Scale Nonlinear Programming.
http://www.cam.ucsd.edu/ peg/papers/sndoc7.pdf, 2006.

1635

Fig. 8. Snapshots taken at 0.5 s interval from synthesized human-to-robot passing motion for various objects when the human and robot are facing each
other. The object, not shown in the images, is passed from the right figure (human) to the left (robot). From the top row: tape, bottle, and bag.

Fig. 9. Snapshots taken at 0.5 s interval from synthesized human-to-robot passing motion for various objects when the human and robot are standing
side-by-side. The object, not shown in the images, is passed from the right figure (human) to the left (robot). From the top row: bottle and bag.

Fig. 10. Snapshots taken at 0.5 s interval from hardware experiment.

Fig. 11. Example of more interesting interaction where the user teases the robot.

[15] Natural Point, Inc., “OptiTrack,” http://www.naturalpoint.com/optitrack/.

[16] C. Rose, P.-P. Sloan, and M. Cohen, “Artist-Directed Inverse-
Kinematics Using Radial Basis Function Interpolation,” Eurographics,

vol. 20, no. 3, 2001.

1636

