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Abstract

A key challenge to create a sustainable and energy-
efficient society is in making consumer demand adap-
tive to energy supply, especially renewable supply. In
this paper, we propose a partially-centralized organiza-
tion of consumers, namely, a consumer cooperative for
purchasing electricity from the market. We propose a
novel multiagent coordination algorithm to shape the
energy consumption of the cooperative. In the cooper-
ative, a central coordinator buys the electricity for the
whole group and consumers make their own consump-
tion decisions based on their private consumption con-
straints and preferences. To coordinate individual con-
sumers under incomplete information, we propose an
iterative algorithm in which a virtual price signal is sent
by the coordinator to induce consumers to shift demand.
‘We prove that our algorithm converges to the central op-
timal solution. Additionally we analyze the convergence
rate of the algorithm via simulations on randomly gen-
erated instances. The results indicate scalability with re-
spect to the number of agents and consumption slots.

Introduction

A key challenge in creating an energy-efficient society is to
adapt electricity demand to supply conditions, e.g., by re-
ducing peak electricity demand. The energy demand man-
agement becomes more critical when the energy supply un-
certainty rises as is the case with increasing penetration of
renewable energy in the electricity market (Medina, Muller,
and Roytelman 2010a). A straightforward way to manage
consumer demand is via direct load control (DLC), in which
utility companies directly control the power consumption of
consumers’ appliances by switching them on/off. In small
scale pilot studies, DLC has been successful in reducing
peak energy consumption by better matching of supply and
demand. However, the biggest drawback of DLC is that con-
sumers may not be comfortable with utility companies hav-
ing direct control over their appliances (Rahimi and Ipakchi
2010; Medina, Muller, and Roytelman 2010b). An indi-
rect method of controlling the overall demand is to use tar-
iffs (such as time-of-use (TOU) pricing) to incentivize con-
sumers to shift peak time energy use. Recent technological
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advances in smart meters and smart appliances, have en-
abled direct and real time participation (RTP) of an individ-
ual consumer in the energy market through the use of soft-
ware agents. A key feature of RTP programs is that each cus-
tomer communicates with the utility companies individually
which may lead to undesirable effects like herding (Ram-
churn et al. 2012).

In (Mohsenian-Rad et al. 2010) it is argued that a good
demand side management program should focus on control-
ling the aggregate load (which is also important for eco-
nomic load dispatching (Wood and Wollenberg 1996)) of a
group of consumers instead of individual consumers. There-
fore, in this paper we introduce and study the problem of
coordinating a group of consumers called consumer coop-
eratives. A consumer cooperative allows partial centraliza-
tion of consumers represented by a group coordinator (me-
diator) agent, who purchases electricity from utilities or the
market on their behalf. Such consumer configurations can
potentially increase energy efficiency via aggregation of de-
mand to reduce peak power consumption, and direct partici-
pation in the energy markets. The coordinator is not a market
maker or a traditional demand response aggregator (Jellings
and Chamberlin 1993) since it neither sets energy prices nor
aims to incur profits by selling to the market. Rather, its role
is akin to a social planner’s in that it manages the demand of
its associated consumer group for cost effective electricity
allocation. It has to ensure that the demand goals and con-
straints of group members (consumers) are fulfilled, while
also helping flatten out peak demands for the group. The
consumers espouse the goals of the group, however they are
not willing to totally disclose their demand goals and con-
straints to either other firms or the coordinator. Moreover,
the members autonomously decide how to shift their loads to
help the group flatten peak demands. Real world consumer
groups coordinated in the above manner can be formed natu-
rally in many application scenarios, especially when they are
geographically co-located, e.g., industrial parks/technology
parks, commercial estates, large residential complexes.

The partially centralized coordination model offers sev-
eral advantages to the stakeholders. For individual con-
sumers, participation in such energy groups allows them to
retain control of their own appliances. In addition, the con-
sumers can obtain electricity at better prices than they would
have obtained if they bought individually. The price advan-



tage is due to three reasons. First, because of its size, the me-
diated participation of the consumer group in the market al-
lows the group to enter into more flexible purchase contracts.
This has the result that the price paid by the consumers re-
flect more accurately the actual cost of production (which
is not the case in current long term fixed contract struc-
tures (Kirschen 2003)). Second, by buying as a collective,
the group can benefit from volume discounts. The situation
here is analogous to group insurance programs in compa-
nies. Third, in negotiated electricity contracts, the price usu-
ally consists of two components, one coming from the actual
energy production cost and the other as a premium against
volatility in the energy demand and/or supply. Buying as a
group helps in reducing the premium against volatility since
the coordinated demand management can achieve higher
stability of demand and reduce demand peaks. From the util-
ity’s perspective, the consumer groups are large enough to
be useful in demand response programs and have more pre-
dictable demand shifts compared to individual consumers.

The technical challenge in designing a consumer cooper-
ative is that the central coordinator does not know the con-
straints of the individual consumers and thus cannot com-
pute the optimal demand schedule on its own. Furthermore,
the actual cost of electricity consumption will depend on the
aggregate consumption profile of all agents and the agents
may not want to share their consumption patterns or con-
sumption constraints with other agents. Therefore, in this pa-
per, we design an algorithm that enables the central agent to
coordinate the consumers to achieve the optimal centralized
consumption load where the agents have private knowledge
about their consumption constraints.

We design an iterative algorithm where, in each iteration,
the coordinator sends a virtual price signal to the consumers
and the agents compute their consumption profiles based on
this price signal and send it back to the coordinator. We
prove that this iterative algorithm ensures that the agents
converge to the optimal centralized schedule. This provably
optimal demand scheduling algorithm for consumer cooper-
atives is the primary contribution of this paper.

Related Work

Demand response programs for managing consumer side de-
mand have been studied from a variety of directions ranging
from direct load control to indirect incentive based control
(please see (Medina, Muller, and Roytelman 2010a) and ref-
erences therein for an overview). Here, we will restrict our
discussion to demand management using variable price sig-
nal as this is most relevant to our current work.

In the extant literature on indirect demand shaping it is
(implicitly or explicitly) assumed that the utility companies
can send a price signal to software agents at the smart me-
ters that respond to this price and schedule the appliances for
the future (examples include (Philpott and Pettersen 2006;
Chu and Jong 2008; Parvania and Fotuhi-Firuzabad 2010;
Pedrasa, Spooner, and MacGill 2010; Conejo, Morales, and
Baringo 2010; Kim and Poor 2011; Tanaka et al. 2011;
Dietrich et al. 2012; Roozbehani et al. 2012; Mohsenian-
Rad and Leon-Garcia 2010)). However, with such price sig-
nals, in theory, there is a possibility of instabilities like herd-

ing phenomenon, whereby agents move their consumptions
towards the low price times and thus cause a spike in de-
mand, thereby increasing the energy cost. Various heuristics
have been proposed, but there is no algorithm with prov-
able guarantees to solve this problem (Ramchurn et al. 2012;
Voice et al. 2011; Ramchurn et al. 2011). A key feature of
this work is that the agents communicate directly with the
utilities and the focus is on controlling the overall load by
interacting directly with each consumer. There is no interac-
tion among the consumers.

In contrast, (Mohsenian-Rad et al. 2010) have focused on
a utility or a generator controlling the load of a group of con-
sumers. The authors accomplish this by allowing the indi-
vidual consumers to interact with one another. The problem
is formulated in a game-theoretic framework and the con-
sumers coordinate in an iterative manner and exchange their
demand profiles (but not their consumption constraints with
each other). In this paper, we consider consumers interact-
ing as a group with the utility, but our consumer architecture
is different. We assume the consumers to form a cooperative
with a central coordinator and our agents do not share their
consumption profiles with other agents.

Problem Formulation

We consider a central coordinator purchasing electricity
from the electricity market to support demands of a con-
sumer group. We assume that the price is known over the
whole planning horizon. This is true when the agent group
has a long term electricity contract (say yearly) and the
agents planning horizon is shorter (say 1 day). The contract
is not a flat rate contract since in this case there would be no
economic incentive for the agents to shift their demands.
We consider N members in a group with the planning
period divided into M discrete time slots. The number of
discrete time slots we consider is dependent on the market
price structure, which can be different in practice based on
the utility companies. For example, M = 2 for time-of-use
pricing with different prices during day and night, whereas
M = 24 in an hourly pricing scheme. Let R be an N x M
matrix where each row of the matrix, r; is the electricity
demand of the agent ¢, i € {1,2,...,N}. We call r; the
demand profile of agent i. Each entry r;; is the electricity
demand of agent ¢ for time slot j. The total aggregated de-
mand in time slot j is p; = Zi\; r;j. The average market
price of a unit electricity at time slot j is defined as p;(p;).
We assume a typical market price function where the
prices are different in each time slot and has a threshold
structure. For each time slot, every unit of electricity con-
sumed below a specified threshold is charged at a lower
price, while any additional unit exceeding that threshold is
charged at a higher price. Thus, the marginal electricity price
in a time slot, denoted by pé‘/[ (p;), is a non-decreasing func-
tion of the total demand. The marginal price at a given de-
mand is payment increment (decrement) for adding (reduc-
ing) one unit of electricity. Figure (1) shows an example for a
two level threshold price function adopted from BC Hydro.!
The marginal price of a two-level threshold structure can

BC Hydro is a Canadian utility company. This price is obtained from: www.bchydro.com.
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Figure 1: Two-level Threshold Pricing Rates by BC Hydro.

pi pi > hy
Py pi<hy
with pi' > pk, where h; is the threshold for consump-
tion in time slot j. We further assume that the high price
in any time slot is greater than the low price in any other
time slot, i.e., pi > pf, Vj, k. Let 2+ = max {0, z} and
2~ = min {0, z}. The energy cost for time slot j is thus:

p; (p5) p = P (0 — hy) " 40k (o — hy)” +pEhy (1)

formally be written as follows: p;” (pj) = {

The demand profile of each agent r; must satisfy their
individual constraints. We assume that the total demand of
each agent during the whole planning period is fixed, i.e.,
Zj]\il r;; = Ti, where 7; is the total demand for agent 7. The
overall demand can come from two types of loads, shiftable
loads and non-shiftable loads. We will consider loads where
the consumption constraints are given by a constraint set X;
which is private knowledge of the agent i. An agent does
not share this constraint set X;, neither with other firms nor
with the coordinator. Unless otherwise specified we will as-
sume that X; can be expressed by constraints of the form
Ti; € [rij,Tq;) specifying the minimum and maximum con-
sumption of agent 7 in time slot j, where 7; ; = 0. Note that
these constraints are linear and & is a convex polytope. In
some application scenarios, when an agent determines its en-
ergy consumption profile, it has to consider additional cost
associated with the consumption schedule. For example in a
factory the energy is usually for production. Thus changing
the energy consumption schedule may mean changing the
production process, thereby, the production cost. For agent
i, we denote this cost by g;(r;). We assume this cost func-
tion to be convex. The overall cost function of each agent is
then ZJle p; (pj) rij + g;(r;). With the objective to mini-
mize the sum of all agents costs, the central energy alloca-
tion problem can be written as:

min C (R) = 70 22550 py(os)riy + Sl gi(ra)
s.t. r; € A, ijvil Tij = T
@)
where the energy allocations r;; are the optimization vari-
ables. Note that the above problem is defined on a convex set

X;. Although the objective function is non-linear it is convex
because of the following. First, >.7 | Zjvil p; (pj)rij =
Zjvil p; (p5) p; is convex and non-decreasing in p; as indi-
cated by Equation (1). Together with p; = Ef\il T4, We can
conclude that Zjle p; (pj) pj is convex in r;;, Vi, j (Boyd
and Vandenberghe 2004). Since g;(r;) is also convex, the to-
tal cost function C (R) is a summation of convex functions

and so also convex. Thus Problem (2) is a convex minimiza-
tion problem.

Solution Approach

Although the problem in (2) is a convex optimization prob-
lem, since the constraints and preferences of the agents are
private knowledge, the consumption profiles cannot be com-
puted directly by the central coordinator. Since the con-
straints in Problem (2) are agent-specific, they are naturally
separable. The objective function, although a sum of the in-
dividual costs of each agent, is coupled, because the price
of electricity in any time slot, j, depends on the aggregated
consumption of all agents p;. Therefore, we use a primal
decomposition approach to solve the problem in which the
sub-problems correspond to each agent optimizing its own
energy cost subject to their individual constraints. The cen-
tral coordinator has to compute the appropriate information
to be sent to the agents so as to guide the consumption pat-
tern towards time slots with lower prices (this corresponds
to the master problem in primal decomposition methods).

An intuitive solution approach would be for the coordina-
tor to tell the agents the aggregated demand in each time slot.
Knowing the market price, the agents could then solve their
individual optimization problems. This approach has prob-
lems because the agents don’t know the constraints and con-
sumption preferences of the other agents in the group, while
their costs strongly depend on the consumption of the other
agents. For example all agents knowing the market price and
the current aggregated demand could shift as much demand
as possible to a supposedly cheap time slot. This would lead
to a herding phenomenon, where all agents would move to
the cheap time slot resulting in a rise in the demand and thus
increasing the total cost. This effect is shown in Figure (2)
where part (a) illustrates an initial setting before the shift and
part (b) shows a demand profile resulting from the herding
phenomenon. Thus, the key challenge is to design the price
signal which the coordinator sends to the agents.

We propose a novel virtual price signal that the coordina-
tor uses to guide the agents” demand profiles. A virtual price
signal is not the final price the agents have to pay, but infor-
mation about what they would have to pay, given the current
aggregated demand. The goal of designing the virtual price
signal is to enable the agents to foresee the possible price in-
crement/reduction caused by their demand shifting. There-
fore, the virtual price signal, s;; (rij), is a function of the
agents demand in each time slot. To design the virtual price
signal the coordinator first computes the amount of demand
that should be ideally shifted in each time slot. As shown
in Figure (2a), this amount, denoted by A;, j = 1,2,3, is
the difference between the total demand and the threshold
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Figure 2: A comparison of demand profiles in Initial, Herding and Coordinated scenarios.

in each time slot. To avoid herding the amount A; needs to
be divided amongst the agents and a threshold price signal
needs to be designed for each agent, so that the price be-
low the threhold is lower than the price above the threshold.
This serves to penalize the total demand in a time slot go-
ing above the threshold. Thus, the agents know how much
demand they can shift at what prices and can solve their in-
dividual optimization problem. The exact calculation of the
price signal s;;(r;;) is shown in the following section. Given
the price signal, the optimization problem each agent solves
is

. . M
min C; (r;) == min > 57, 855 (15) 7ij + ;(:)
M
s.t.r; € Xi, Zj:l Tij = Ti-
Note that the above problem, like the central problem, is a
convex optimization problem and is thus solvable.

3)

Coordination Algorithm

We will now present the algorithm for energy allocation and
the details of virtual price signal design. Note that because of
their individual constraints and cost functions some agents
might not be able to shift as much demand as was assigned
to them by means of the virtual price signal. This implies
that the aggregated demand shift can be less than the amount
that could have been achieved. Figure (2c) shows this sce-
nario where the total demand in the second time slot remains
above the threshold. To shift the remaining amount, another
price signal dividing the excess amount would be necessary.
This motivates us to design an iterative algorithm for the co-
ordinator to update the virtual price signal based on the con-
sumer’s feedback and thus gradually adjust the individual
demands to the central optimal solution. Each iteration con-
sists of two steps: First, the central coordinator aggregates
the demand submitted by the agents and computes virtual
price signals for each agent. Second, the individual agents
use the price signal to solve their individual cost optimiza-
tion problem and report their new demand profile to the co-
ordinator.

Overview of algorithm

Recall that r; denotes the demand profile of agent ¢ and that
R is the matrix of the demand profiles of all agents. Let r}
be the updated demand profile of agent ¢ after an iteration
and R’ be the new demand profile of all agents.

Initialization: All agents compute an initial energy con-
sumption profile r; by solving Problem (3) based on the
market prices and send it to the coordinator.

1. The coordinator adds up the individual demands to deter-
mine the aggregated demand p; and then calculates the
amount of demand to be shifted in each time slot Aj;.
Finally the coordinator divides that demand amongst all
agents and computes the virtual price signals s;; (r;;).

2. The coordinator sends the virtual price signals to all
agents.

3. After receiving the virtual price signal, all agents individ-
ually calculate their new demand profiles r} according to
their optimization Problem (3).

4. The agents send their new demand profiles back to the
coordinator.

5. The coordintor compares the new demand profiles to the
old profiles. If no agent changed its demand profile, i.e.,
R = R/, the coordinator stops. Otherwise, it sets R = R/
and goes to step (1).

Coordination with virtual price signal

In this section we explain how the central coordinator coor-
dinates the firms in demand shifting via virtual price signals.
The key idea is to use the marginal electricity cost in each
time slot to create the virtual price signals for the agents.
Shifting demand from time slots with high marginal cost to
those with low marginal cost can be beneficial provided an
appropriate amount is shifted. An appropriate shift implies
that the resulting aggregated demand profile does not lead
to higher marginal price in the former cheap time slots. As
an example, in Figure (2a) a demand shift from time slot
2 to time slot 1 could be beneficial, as long as the shifted
amount does not exceed A;. In order to limit the agents de-
mand shifts they have to be able to foresee the price changes
caused by their demand shifting.

The virtual price signal: The virtual price signal is a
threshold price function providing marginal prices and also
the demand levels at which the prices apply. The virtual price
signal is structured as follows

H
M.y _ Py Tig > hij 4
S (rig) = {pJL ri < hj @



in which h;; is the threshold for agent 4. Although the
prices pf and ij are the market prices, we call this a vir-
tual price signal, because the threshold h;; can change if
the agents change their demand profiles. The coordinator
chooses h;; < r;; toinduce the agents to reduce or h;; > r;;
to increase demand in one time slot. With A;; as the amount
the coordinator wants agent ¢ to change demand in time slot
J, the threshold h;; is updated based on the demand submit-
ted in the last iteration:

hij =15 + Ayj &)

Thus, the agents know that at the current market price they
can at most change their demand in time slot j by A;;. For
the demand exceeding h;;, they need to pay a higher price.
The demand, A ;, the coordinator wants to change in time
slot j is calculated as the difference between the current ag-
gregated demand and the threshold of the market price:

Aj=hj—pj ©)

Since the coordinator doesn’t want the agents to change
their demand more than A; the coordinator has to ensure
that . A;; < Aj;. The coordinator calculates the shift at-
tributed to each agent proportional to that agents share of

demand in that time slot: A;; = ZJ i
ij

The agent’s response to the virtual price signal: Hav-
ing received the virtual price signal the firms will indepen-
dently optimize their demand profile in order to minimize
their cost according to Problem (3). Together with the vir-
tual price signal the agents’ objective function C; (r}) =

Z;W 185 (r];) 7i; + i(r}) can be written as:

M
> [PJH (riy = hag) " +pf (i — i)~ +P§hij] +g:(r?)

j=1

Q)
Since the virtual price signal divides the amounts to be
shifted amongst the agents so that the agents have to pay the
high price pfl for demand exceeding their individual thresh-
old, no agent will shift too much demand, based on a false
impression of possible cost reduction.

Convergence of the algorithm

In this section we prove that the above introduced iterative
algorithm converges to the optimal solution. First we will
show that the algorithm converges and then we will show
that the converged solution is an optimal solution under cer-
tain consitions. In Lemma 1, we will show that the algorithm
strictly reduces cost in every iteration. We will use this fact
in Theorem 1 to show that the algorithm always converges.
Then in Theorem 2 we will show that, when g,;(-) = 0, the
converged solution is an optimal solution.

Lemma 1. The algorithm strictly reduces the total cost in
every iteration: C (R’) < C(R).

Proof. In the following we give a sketch of the proof, but
omit some algebraic steps because of space constraints. In
the beginning of each iteration the total cost for the con-
sumer group based on market prices as of Problem (2) is

equal to the cost of the sum of the agents’ Problems (3)
based on the virtual price signals ZL C;(r;) =C(R):

N M

ZZSW (rij) Tij +Zgl r;)

i=1 j=1
N M
=SS ot (g = (s (hi —p))ris \\
= Dj Tij Tij + z ~
i=1 j=1 i T
L (hy —m)m))*
+p; (g — | i +
pg J J E'Tij

+Zgz rl
+pj ]+Zgl r;)

- [pjﬂ —h))" 4P} (ps — hy)

(pj)rij + Zgl r;)

If the algorithm has not stopped, at least one agent has
changed its demand profile, i.e., 3i with r{ # r;. From Prob-
lem (3) agents only change their demand profile, if that re-
duces their cost. Thus, given the virtual price signal for agent
i the cost of the new demand profile r} is strictly lower than
of its previous demand profile r;: C; (r}) < C; (r;).

After all agents have submitted their new demand profile
the new aggregated demand is computed as: p; = Zf\;l rgj.
Now we show that for every time slot j the total cost given
the new aggregated demand and market prices is lower or
equal to the sum of the agents’ individual cost given their
new demand profiles and the virtual price signals. With

Equations (1) and (7) we get the difference of the two costs:
N N
Vi > oy (05) i — D si (i) vl
i=1 =1
_ { [Zﬁlr;jghij (pi" —p7) (v —

SN o, 0 =) (0
Since 3201 p; (o)) 11y < Xilysig (rf;) vl; Vi, it also

holds for the sum of all time slots: C (R') < Zfil C; (r}).
Thus, the total cost is strictly reduced in each iteration:

Theorem 1. The iterative algorithm always converges.

w)] <0 pj>h;

h
hz])] < 0 p; < hj

Proof. From the definition we have that problem (2) is con-
vex and a lower bound on the total cost can be obtained by
the sum of the individual initial demand profile costs at mar-
ket prices. From Lemma 1 we have that the algorithm re-
duces the total cost in each iteration. Thus, it can be con-
cluded that the algorithm converges. O

Theorem 2. Assuming g;(-) = 0, the converged solution R
is optimal.



Proof. We now prove by contradiction that when the algo-
rithm has converged to the solution R, then no other solution
R’ exists with lower cost respect to the central problem (2).
Assume there exists a solution R’ with C(R') < C(R.), then
there exist 2 time slots {j, k} st. p’; < p; and p} > py and
p}(pj) > pi' (pr)- Otherwise the cost would not be lower.
We will show that for time slots {j, k} where p; > > . r;;
and pp < Y, Ty, it always holds that p}(p;) < pp'(p),
thus our assumption that p}/ (p;) > py’ (px) is contradicted.
If p; # hj, pr # hi we get that all time slots not at
the threshold with lower marginal cost than time slot j are
at their maximum constraint, because otherwise a shift from
7 to that time slot would be beneficial for at least one agent
and the algorithm would not have stopped. Time slot & is not
at the maximum constraint. It follows p}' (p;) < pp' (o).

If pj = hj, pr = hg then p}'(p;) = pf (as p; de-
creases) and pM(pr) = pH (as py increases). From the
the market price structure we have pkH > ij . It follows
pi (p5) < (pr).

If pj # hj, pr = hy and if p; < h; then p;”(pj) = pf
and py' (pr) = pyl thus pM(p;) < p'(pr). If p; > h;
then p}’ (p;) = pi' and p}/ (px) = pi!. We have p! > pl,
because otherwise a shift from j to k£ would be beneficial for
at least one agent and the algorithm would not have stopped.
It follows p}* (p;) < pp! (pr). The case of p; = hy, py, # hy,
works similarly.

It follows that R is the optimal solution to the central
problem, as no solution with lower cost exists. Thus, the pro-
posed iterative algorithm converges to the optimal solution.
Since the problem is convex that solution is also the global
optimal solution (Boyd and Vandenberghe 2004). O

When g, () # 0 the algorithm can get stuck in a subop-
timal solution, for which we have counter examples. How-
ever if in the converged solution all aggregated demands are
not at the threshold, the solution is still optimal. When some
thresholds are hit we need an additional phase, where the co-
ordinator queries the agents for their individual valuation of
an additional unit in those time slots. The coordinator uses
this information to adjust the price signals.

Simulation Results

In the previous section we proved the convergence of the
introduced algorithm to the global optimal solution. Since
we do not have a bound on the number of iterations needed
for convergence, we conducted simulations on randomized
data to get an indication of the convergence rate and scal-
ability. In this section we present the results of our exper-
iments. In our experiments we considered populations of
up to 200 agents and varied the number of time slots up
to 48. For the analysis we had to specify the market prices
and the agents’ individual constraints. We based the prices
on the pricing model of BC Hydro as in Figure (1) and
generated the values for the prices uniformly distributed
pl € [4,8], pf € [8,16] and h; = 10*N, where N
is the number of agents. We generated the constraints for

1.07 T T T
—&— 50 agents
—E&— 100 agents
—*— 150 agents
—¥— 200 agents

°
&
T

=3
G
T
I

90% of cost reduction is
reached after 3 iterations

°
X
T

=}
N}
T

2
:

Total cost compared to optimal solution C(R) / C(R*)
&
T

=)

Number of iterations

Figure 3: Reduction of total cost over the course of the algo-
rithm for different agent populations sizes.

the lower and upper bounds and total consumption uni-
formly distributed r;; € [6.5,11.5], 755 € [ri;,2ri;] and

mio€ (D0, 0450 iy + 0.6 0L, 75 - Figure (3)
illustrates the results of our experiments, showing how the
total cost is reduced over the course of the algorithm. Since
the agents have no individual virtual price signals in the first
iteration, they optimize their cost according to the market
prices. The graph shows the cost reduction for the different
agent populations. Each data point is the average over all
variations of numbers of time slots. The main finding is that
over all experiments we see that 90% of the cost reduction
is reached within 3 iterations. The average cost reduction is
5.3% of the initial cost. Since the simulation was conducted
only on randomized data, this cost reduction is just a first in-
dication of possible gains. We plan to evaluate our approach
on real consumption and pricing data in future work.

Conclusion

In this paper, we presented an iterative coordination algo-
rithm to minimize the energy cost of a consumer coopera-
tive given private information about the demand constraints.
We designed a virtual price signal that coordinates the con-
sumers’ demand shifts such that the total cost is reduced in
each iteration. Then we proved the convergence of the algo-
rithm to the global optimal solution. Finally our simulations
indicate that the algorithm scales with the number of agents
and consumption slots.

Future work will first check the individual rationality of
an agent to join the cooperative and also the incentive com-
patibility of an agent to report his consumption in each iter-
ation truthfully. We will also look at scenarios with the pres-
ence of storage and generation. The consumer group may
have centralized and or decentralized generation and/or stor-
age facilities. We also aim to consider uncertainty of prices.
The electricity price is uncertain, when the planning horizon
is longer than the horizon for which prices are known. More-
over we may consider the setting of the coordinator being a
profit making entity.
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