
Adaptive Motion Planning for Humanoid Robots

Nikolaus Vahrenkamp∗, Christian Scheurer∗, Tamim Asfour∗, James Kuffner† and Rüdiger Dillmann∗
∗Institute of Computer Science and Engineering †The Robotics Institute

University of Karlsruhe Carnegie Mellon University
Haid-und-Neu Str. 7 5000 Forbes Ave.

76131 Karlsruhe, Germany Pittsburgh, PA 15213
{vahrenkamp,scheurer,asfour,dillmann}@ira.uka.de {kuffner}@cs.cmu.edu

Abstract— Motion planning for robots with many degrees of
freedom (DoF) is a generally unsolved problem in the robotics
context. In this work an approach for trajectory planning is
presented, which takes account of the different kinematic parts
of a humanoid robot. Since not all joints of the robot are
important for different planning phases, the RRT-based planner
is able to adapt the number of DoF on the fly to improve the
performance and the quality of the results. The runtime of
the approach is evaluated in comparison to a standard RRT
planner. Futhermore several extensions to the algorithm are
investigated.

I. INTRODUCTION
Motion planning for highly redundant robot systems with

many degrees of freedom is a challenging field of research.
For a given task, the algorithms have to find trajectories
for all involved joints in a fast and robust manner. The
general motion problem is PSPACE hard [1], which means
the planning time can dramatically inrease for systems with
many degrees of freedom. To solve this problem, approx-
imated algorithms have been developed, which promise a
faster search for solutions, but with the restriction that some
solutions are not noticed [2].

A humanoid robot has several subsystems, like arms,
hands and a head, which should be involved into the planning
process. In [3], an approach is presented where the number
of active joints changes dynamically in order to adapt the
volume of the reachable workspace. In [4], a multi-level
planning scheme is presented where the planning complexity
is iteratively increased by adding nonholonomic constraints
at each planning level. The planner in [5] is able to auto-
matically adjust 4 DoF of a humanoid robot depending on
the detected environmental situation. This planning scheme
strongly depends on the situation detecting which can be
difficult if many joints are used for planning. In [6], a multi-
level planner is presented, which starts with a low C-space
resolution and increases the sampling resolution to finer
levels when a coarse solution was found. The approach that
is presented here, picks up the idea of adaptively controlling
the number of DoF used for planning and thus improving the
planning performance. The planner uses different kinematic
subsystems of the robot which are selected depending on the
planning phase. E.g. a typical planning task like grasping an
object in a cupboard can be divided into subgoals. The robot
has to move in front of the object, then a reaching process
of the arm should bring the tool center point (TCP) next to
the target and finally the hand should grasp the object. The

Fig. 1. The humanoid robot ARMAR-III.

different phases do not need to be planned with full detail
of the robot, since some joints are not important for the
subtask. The adaptive planner, described in this paper, selects
the kinematic subsystems depending on the distance to the
target. The planner is based on efficient single-query RRT
algorithms ([7], [8], [9]) which are used to build up a tree
of collision free configurations. The proposed algorithms are
evaluated in comparison to a reference implementation of the
RRT algorithm. As testcase the simulation environment of
the humanoid robot ARMAR-III (Fig. 1) is used for planning
a grasping task.

II. RRT-BASED PLANNING

Rapidly-Exploring Random Trees (RRTs) belong to the
category of sampling-based, randomized planning algorithms
([8], [7]). They are widely used for single-query path
planning because of their simplicity and effciency as well
as the possibility of involving differential constraints and
many degrees of freedom. Several variations from the basic
RRT algorithms to bi-directional and other problem-adapted
planners have been arisen in the last few years due to the
multifarious application range of Rapidly-Exploring Random
Trees [10].

The key advantages of the basic Rapidly-Exploring Ran-
dom Tree construction, described in [8], are that the expan-
sion of a RRT is biased toward unexplored state space and
only few heuristics and parameters are needed. Furthermore
RRT-based algorithms are resolution complete, i.e. with



increasing iterations the apporach gets arbitrarily close to
any point in the free C-space.

In principle, the basic RRT can already be used as a plan-
ner because of the fact that its vertices will eventually cover
the whole collision-free configuration space C f ree coming
arbitrarily close to any specified goal configuration cgoal . But
such a basic planner would suffer from slow convergence and
bad performance, so that improvements by biasing the search
toward a goal are reasonable. Two simple RRT-based planner
named RRT-GoalBias and its enhancement RRT-GoalZoom
are implementing this technique [2]. RRT-GoalBias selects
the goal configuration as random state in a small number of
iterations, so that the methods Extend or Connect are trying
to generate a straight-line path toward the goal. Introducing
too much bias on the other hand can also lead to poor
efficiency because the planner gets trapped in local minima
during the search process. For this reason, RRT-GoalZoom
as a further improvement of RRT-GoalBias was introduced.
Here, a region around the goal instead of one individual
configuration is used to bias the search. This goal region is
in addition controlled by the closest RRT vertex in the tree,
so that its extent is changed dynamically. In some cases, a
configuration picked from this goal region rather than from
the whole state space is used to try a connection to it [10].

Since the resulting trajectories are generated by connecting
random configurations in C-space, the movement of the
robot is not optimal. To get a smooth and short solution
path a postprocessing step is necessary which converts the
result of the RRT-based planning to a homotopic path which
comes close to an optimal solution. A simple and powerful
approach, which is used to smooth the results of Fig. 5 and
6, randomly searches collision free shortcuts in the solution
path ([4], [6]). Further improvements can be achieved by
iteratively increasing the obstacle distance of all path points
until a minimum distance is reached [11].

III. WEIGHTED SAMPLING

The dimensions of the configuration space differ in the ef-
fect of the robot system in workspace. Since each dimension
of C describes a different effect in workspace, the dimensions
have to be weighted in order to generate a uniform sampling.

There are several ways of doing joint weighting. A simple
technique is a manual and fixed weighting with wi > w j,
if the center of the axis of joint i is further away from
the tool center point of the robot manipulator than from
the center of the axis of joint j. These distances however
are different in each single configuration and depending
on the actual robot state they have more or less effect on
the movement of the robot, so dynamically adapted joint
weights would be a better choice than fixed weighting. But
dynamically weight adaption increases the computation time
since the distances between all joints have to be computed
for every single configuration. Therefore, an upper bound
for the workspace movements of each limb is used for an
efficient and approximated uniform sampling.

A change εtrans in a translational component of the C-
space moves the robot in workspace by εtrans millimeters.

All other dimensions of the C-space have to be investi-
gated explicitly to derivate the upper bound of the robot’s
workspace movement. Table I gives an overview of the
maximum displacement of a point on the robot’s surface
when changing one unit in C.

TABLE I
WORST CASE WORKSPACE MOVEMENT FOR ARMAR-III.

Degree of freedom mm Degree of freedom mm
Platform Translation x 1 Arm Elbow 390
Platform Translation y 1 Wrist 1 150
Platform Rotation 1176 Wrist 2 150
Torso Pitch 1176 Wrist 3 150
Torso Roll 1176 Hand Thumb 1 70
Torso Yaw 1176 Hand Thumb 2 70
Head Pitch 300 Hand Index 1 70
Head Roll 300 Hand Index 2 70
Head Yaw 300 Hand Middle 1 70
Arm Shoulder 1 700 Hand Middle 2 70
Arm Shoulder 2 700 Hand Ring 70
Arm Shoulder 3 390 Hand Pinkie 70

The effects of moving one unit in the different dimensions
can be seen in Fig. 2.

(a) (b)

Fig. 2. (a) The humanoid robot ARMAR-III moving in a translational
dimension. (b) The effect in workspace when changing the C-space value
for the dimension associated with the torso pitch joint.

The different workspace effects are considered by using a
weighting vector w whose elements are given by the values
of the workspace movements from table I. In Eq. 1 the
maximum workspace movement dWS(~c) of a C-space path
~c = (c0, ...,cn−1) is calculated.

dWS(~c) =
n−1

∑
i=0

wici (1)

To sample a C-space path between two configurations ~c1
and ~c2, the vector ~vstep is calculated (Eq. 2). For a C-space
displacement of ~vstep it is guaranteed that the maximum
workspace displacement is 1mm.

~vstep(~c1,~c2) =
(~c2 −~c1)

dWS(~c2 −~c1)
(2)

The maximal workspace stepsize εws can be specified
in millimeters, which allows to control the granuality of
the planning algorithms in an easy way. The stepsize εws



is used to generate n = d dws
εws

e − 1 intermediate sampling
configurations ~ck on the path between two configurations ~c1
and ~c2.

~ck =~c1 + kεws~vstep(~c1,~c2) , k = (1, ..,n) (3)

This sampling of the C-space path (~c2−~c1) guarantees that
the workspace movements of the robot for two successive
intermediate configurations is smaller than the upper limit
of εws mm.

IV. ADAPTIVE PLANNING

Since a complex robot system has many degrees of free-
dom, a planner considering all the joints of the robot, could
suffer from the high dimensionality of the configuration
space. A RRT-based planner using standard techniques to
generate a motion trajectory for a humanoid robot with 43
DoF, like ARMAR III [12], is not able to find solutions in
reasonable time. The 43-dimensional C-space is not suitable
for searching free space paths, even when using large step-
sizes for approximation.

To be able to find solutions in a high dimensional C-space,
we introduce a planning scheme which adaptively changes
the number of joints used for planning. The proposed planner
benefits from the partly reduced dimensionality of the con-
figuration space since free space that has to be covered by the
RRT is limited. As shown in the experiments, the planning
times could be noticeable decreased and the resulting planner
is fast enough for the use on a real robot platform.

Kinematic Subsystems

To divide the planning problem into smaller subsets,
where the use of a RRT-based planning algorithm is more
promising, we define different subsystems of the robot. These
subsystems are robot specific and like the kinematic structure
they have to be defined once for a system.

TABLE II
SUBSYSTEMS OF ARMAR-III.

Subsystem Involved Joints # Joints
Platform Translation x,y, Rotation 3
Torso Pitch, Roll, Yaw 3
Right Arm Shoulder 1,2,3, Elbow 4
Right Wrist Wrist 1,2,3 3
Right Hand Thumb 1,2, Index 1,2, Middle 1,2 8

Ring, Pinkie
Left Arm Shoulder 1,2,3, Elbow 4
Left Wrist Wrist 1,2,3 3
Left Hand Thumb 1,2, Index 1,2, Middle 1,2 8

Ring, Pinkie
Head Neck Tilt, Pitch, Roll, Yaw 4
Head Eyes Eyes Tilt, Eye Pan Right, Eye Pan Left 3

With these subsystems for the robot we are able to reduce
the complexity of the planning process by concidering only
the systems that are needed for a given planning task. The
planning framework decides which systems are included in
the planning process and configures the planning algorithms
automatically. For example, the task of grasping an object out
of the cupboard, may need the subsystems Platform, Torso,

Right Arm, Right Wrist and Right Hand to get involved for
planning. The choosen subsystems result in a 21 dimensional
configuration space which is used for searching a path in
C f ree. The joints which are not considered, remain in their
standard pose and can be adopted in a postprocessing step,
e.g. the head can be adjusted to see the target.

Adaptively Changing the Complexity for Planning

To accelerate the planning process, we want to introduce
an adaptive RRT-based planning scheme which is able to
change the dimensionality of the C-space adaptively. This
concept is implemented for unidirectional and bi-directional
planners. To explain the algorithm, first the unidirectional
method is described, the bi-directional planner is introduced
in section V.

The planner starts with a low dimensional C-space in order
to move the robot in the environment to a position that is near
to the target object. For this positioning in the envirmonmet
the detailed kinematic structures of the robot (e.g. the finger
joints) are not considered, since they do not support the
planning process in this rough planning step. If the planner
has found a path in C-space which brings the robot near
to the target object, or if the reduced planning failed, more
joints are used to allow a more detailed planning. Which
joints or subsystems are choosen to increase the complexity
depends on the planning task. This planning scheme is
performed until a solution is found or the full complexity
of the robot is reached.

A parameter, which directly affects the planning time, is
dPlanningArea, the minimum workspace distance of the TCP to
the target configuration. When the TCP distance falls below
this value the planner changes to the next level and increases
the number of involved subsystems. For this reason the TCP
workspace distance to the goal configuration is calculated for
each new configuration that is added to the RRT.

To avoid a manual definition of dPlanningArea for each
planning level, the minimum TCP distance for the first level
is set to the doubled maximum reaching distance (in case of
AMRAR III, this is 1176 mm) and the following values are
calculated by iteratively bisecting dPlanningArea. The extent of
the planning levels are shown in Fig. 3 for the subsystems
Platform, Torso, Right Arm, Right Wrist and Right Hand.

Table III shows the extent of the planning levels for five
subsystems of ARMAR-III. The value for the Right Hand-
subsystem is set to zero, since number of joints could not
increased any more and the planner should go on until a
global solution is found.

TABLE III
EXTENT OF THE PLANNING LEVELS FOR ARMAR-III

Subsystem dPlanningArea (mm)
Platform 2 352
Torso 1 176
Right Arm 588
Right Wrist 294
Right Hand 0



Fig. 3. The extent of the planning levels around a target object for five
subsystems of ARMAR-III.

V. EXTENSIONS TO IMPROVE THE PLANNING

Randomly Extending Good Ranked Configurations

As described in [13] each node in the RRT can hold a
ranking of it’s configuration, which can be used to support
the planning. The ranking is calculated as the workspace dis-
tance of the TCP from the current to the goal configuration.
To improve the planning performance the planner sometimes
chooses one of the last k best ranked nodes and does an
extension step to an arbitrary direction. To avoid trapped
situations, failures are counted and configurations with many
failed extend steps are removed from the ranking.

Bi-Planning

The planning algorithm should find a trajectory for a given
start and goal configuration of the robot. In most cases the
target configuration is more critical than the start configura-
tion, since typical planning tasks will generate grasping or
reaching trajectories. Hence the target configurations often
result in low obstacle distances and thus in limited free space
to operate. These situations are difficult for sampling-based
planners, since only short paths in C f ree can be found ([14],
[15]). To support the RRT-based planner, a bi-directional
planning appoach can be used, which builds up trees from the
start and goal configuration and iteratively tries to connect
them [8], [16].

The adaptive planner has to be adopted slightly to support
the bi-directional search. The foreward tree which starts
the search from the start configuration is build like in the
unidirectional case. The second tree which starts at the goal
configuration needs some changes in the algorithm:

The planner starts with full resolution from the goal
configuration. Each new configuration cn, that is added to
the RRT, is checked whether dtcp−Target , the TCP workspace
distance of the TCP between the new and the goal configura-
tion, is greater than the current extent of the planning level.
In this case the planning level is decreased and the further
planning is done in a C-space with less dimensions.

With this adoption of the adaptive planning algorithm,
the bi-planner builds up two trees, one starting at the

start configuration and one inverted tree starting at the
goal configuration. The bi-planning loop generates random
configurations and tries to connect them to both trees. If this
connection succeeds for both trees, a global solution was
found. If the connection fails, the trees are extended as long
as possible until a collision occurs. This behavior supports
the covering of the free configuration space and leads to a
fast and robust planning algorithm.

Focussing the Search to the Area of Interest

By definining the planning levels, areas of interests with
different extent are defined around the target object. The
planning process can be accelerated by focussing the search
to these areas. Since the global goal trajectory is unknown,
the search should not be limited to one area, otherwise a
solution can be overseen. To achieve a focus on a target
area, an adaption of the classical RRT-Connect and RRT-
Extend algorithms is proposed. The standard extension of
the C-space tree will connect a random configuration cr to
cnn, the nearest neighbor of the existing tree. This behavior
guarantees a uniform coverage of the C-space, which is
a helpful property for a global planning problem, but in
a locally bounded planning task the planning time will
increase, since many areas of the C-space which are not
important for planning are unnecessarily investigated. To
emphazise a specific area in workspace an adaption of
the GoalZoom algorithm is used. Sometimes, instead of an
arbitary configuration cr, a more promising configuration
czoom next to the goal configuration cgoal is used to extend
the tree. The maximum distance dzoom between cgoal and
the randomly choosen czoom depends on the current planning
level. To avoid the introduction of another parameter, dzoom
is defined in workspace and set to the current planning extent
value dPlanningArea. This means that a random position czoom,
used to bias the search towards the goal, has to hold the
constraint, that the maximum workspace distance dWS is
smaller than dPlanningArea (Eq. 4).

dWS(~cgoal ,~czoom) < dPlanningArea (4)

In the bi-directional case the enhancement works as fol-
lows: The randomly choosen configuration, for which a
connection to both trees is tested, sometimes is choosen in
the surrounding of the start or goal configuration, whereby
the distance depends on the planning level.

VI. EXPERIMENTS

Setup

For evaluation the simulation environment of the hu-
manoid robot ARMAR-III is used. The robot model has 43
DoF and for each limb there are two 3D models, one for
visualization and one simplified model for collision checking
purposes. Thus the total number of triangles can be reduced
from 40.000 to 1.000. The robot is operating in a kitchen
environment, which is also modeled with full and reduced
resolution for visualization and collision checking [9].

The robot should start in front of the shelf and find a
trajectory for grasping an object in the cupboard. For this



task, the planner uses the subsystems Platform, Torso, Right
arm, Right Wrist and Right Hand. In our test setup the
subsystem for the right hand consists out of 6 instead of
8 joints because the two middle and the two index finger
joints are coupled and thus are counted like one DoF. The
overall number of joints used for planning and therefore the
dimensionality of the C-space is 19.

We make the assumption that a higher level task planning
module has already calculated a goal position for grasping
the object, thus cgoal , the target in C-space, is known. The
configuration for grasping the target object can be precal-
culated and stored with the object data, e.g. the GraspIt!
simulator can be used [17].

The collision checking routines are a critical point for
RRT-based planning, since the planner spends most of the
time testing robot configurations for collisions with the
environment. Fast and robust collision checking routines are
given by the PQP implementation which uses swept sphere
volumes to test the collision status for 3D models [18].

(a) distance view (b) narrow view

Fig. 4. Target position of the planning task.

The maximum workspace stepsize εws was set to 30mm
for collision checking on path segments. Since εws is a
worst-case approximation, the real stepsizes are significant
lower. When adding a path segment to the RRT, intermediate
nodes are generated in order to support the nearest neighbor
search. These nodes are generated with a maximal workspace
distance of 90mm in all tested planners.

All test runs have been carried out on an Intel Core 2 Duo
Linux System with 2.16 GHZ and 2GB RAM.

RRT-Connect (A)

A first evaluation of the planning problem described above,
has been done by using a RRT-Connect one-way planner.
The planner builds up a tree, covering the free C-space, and
randomly tries to connect this tree to cgoal . The results point
out, that the planner often has difficulties to escape from
local minima and find a correct solution path to the goal
configuration. These local minima may occur from situations
when the right Hand gets under the cupboard or when the
position of the finger joints is disadvantageous. In more than
60% of the test cases, the planning was stopped, because a
time limit of 10 minutes or a limit in RRT nodes (100000)
was exceeded. If the planner did not find a solution within
these limitations, it is not sufficient for the use in a real-world
scenario.

Adaptive Planning (B)

The adaptive planning performs better than the RRT-
Connect method. More test runs succeeded and the planning
time can be reduced by over 60 %. Nevertheless a lot of
planning cycles failed.

Enhanced Adaptive Planning (C)

For further improvement of the adaptive planning, the
GoalZoom-enhancement and the random extend steps of
section V have been implemented and tested. The planner
benefits from these improvements and therefore the plan-
ning time and the number of failed planning runs can be
decreased.

TABLE IV
UNIDIRECTIONAL PLANNING

Planning Avg. Planning Avg. number Avg. number of
succeeded time (success) of RRT nodes collision checks

A 37.5 % 98.6s 30 907 252 605
B 43.5 % 31.3s 10 089 83 017
C 57.5 % 14.2s 5 123 40 522

Bi-Planning: RRT-Connect (D)

The RRT-Connect planner often fails due to local minima
in which the search frequently gets stuck. To support the
planning, the bi-planning approach was implemented for the
RRT-Connect algorithm. The planning succeeded in every
test run and the average runtime was measured with three
seconds (table V row D).

A planned RRT with original (blue) and optimized (green)
solution paths are depicted in Fig. 5.

Bi-Planning: Adaptive Planning (E)

Although the adaptive planner (B) achieves better results
than the RRT-Connect planner (A), there are also settings
in which the planning fails. The results of the bi-directional
RRT-Connect planner (D) point out, that the planning can
benefit a lot from building up two search trees. The adaptive
bi-planner was implemented and tested as described in sec-
tion V. The adaptive reduction of the subsystems combined
with a bi-planner results in an average planning time of 477
milliseconds (table V row E).

Bi-Planning: Adaptive Planning with Enhancements (F)

The GolZoom-enhancement, described in section V, which
noticeable increased the planning performance for unidirec-
tional planners, just decreases the planning time slightly for
the adaptive bi-directional planner. As shown in table V the
average planning time decreases from 477ms to 423ms. Fig. 6
shows a typical RRT with original and reduced solution paths
for this configuration of the planning algorithm.

TABLE V
BI-DIRECTIONAL PLANNING

Planning Avg. Planning Avg. number Avg. number of
succeeded time of RRT nodes collision checks

D 100.0 % 3037ms 784 4 802
E 100.0 % 477ms 477 1 443
F 100.0 % 423ms 388 1 181



Fig. 5. RRT-Connect Bi-Planning: The RRT with original (blue) and
optimized (green) TCP paths.

Fig. 6. Adaptive Bi-Planning: The RRT with original (blue) and optimized
(green) TCP paths.

VII. CONCLUSIONS AND FUTURE WORK

Conclusions

An adaptive planning approach based on the RRT algo-
rithm was presented.

The algorithms have been evaluated with a common
planning problem for a humanoid robot. As testcase a
grasping task in a kitchen environment was choosen where
the planners had to find trajectories for 19 DoF of the robot
ARMAR III. As a reference a standard RRT planner was
used for which the poor performance and the high number
of unsucessful planning cycles have been overcome by using
a bi-planning approach. The results of the adaptive planner
point out that the planning time can be noticeable decreased
if the planning task and the used subsystems of the robot
are known. The use of several extensions combined with the
adaptive approach leads to a planner which is able to find
solutions for a 19 DoF grasping task in about half a second
on average. The planning performance is sufficient for real
world applications and the use on a hardware platform.

Future Work

A more general planner, based on the methods presented
in this paper, is desireable. It would be interesting to in-
vestigate approaches which automatically choose the correct
subsystems and adaptively change the planning levels. A
supervising module can monitor the succes of the algorithm
and by adjusting the parameters on the fly, the planning

algorithm can be adopted to the needs of the planning phases.
To increase the performance of the suggested algorithms, the
nearest neighbor search can be accelerated by using efficient
algorithms like kd-trees or the ANN approach presented in
[19].

VIII. ACKNOWLEDGMENTS
The work described in this paper was partially conducted

within the the German Humanoid Research project SFB588
funded by the German Research Foundation (DFG: Deutsche
Forschungsgemeinschaft).

REFERENCES

[1] J. H. Reif, “Complexity of the mover’s problem and generalizations
(extended abstract).” in FOCS, 1979, pp. 421–427.

[2] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge
University Press, 2006, available at http://planning.cs.uiuc.edu/.

[3] N. E. Sian, K. Yokoi, S. Kajita, and K. Tanie, “A framework for remote
execution of whole body motions for humanoid robots.” in Humanoid
Robots, 2004 4th IEEE/RAS International Conference on, vol. 2, Nov.
2004, pp. 608–626.

[4] S. Sekhavat, P. Svestka, J. Laumond, and M. Overmars, “Multi-
level path planning for nonholonomic robots using semi-holonomic
subsystems.” 1996.

[5] E. Yoshida, “Humanoid motion planning using multi-level DoF ex-
ploitation based on randomized method.” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE Computer Soci-
ety, Edmonton, Canada, 2005, pp. 3378–3383.

[6] P. C. Chen and Y. K. Hwang, “SANDROS: A dynamic search graph
algorithm for motion planning.” IEEE Transactions on Robotics &
Automation, vol. 14, no. 3, pp. 390–403, 1998.

[7] S. M. LaValle and J. J. Kuffner, “Randomized kinodynamic planning.”
International Journal of Robotics Research, vol. 20, no. 5, pp. 378–
400, May 2001.

[8] J. Kuffner and S. LaValle, “RRT-connect: An efficient approach to
single-query path planning.” in Proc. IEEE Int’l Conf. on Robotics
and Automation (ICRA’2000), San Francisco, CA, April 2000.

[9] N. Vahrenkamp, T. Asfour, and R. Dillmann, “Efficient motion plan-
ning for humanoid robots using lazy collision checking and enlarged
robot models,” in Intelligent Robots and Systems, IROS, October 2007.

[10] S. LaValle and J. Kuffner, “Rapidly-exploring random trees: Progress
and prospects.” 2000, in Workshop on the Algorithmic Foundations of
Robotics.

[11] R. Geraerts and M. H. Overmars, “Clearance based path optimization
for motion planning.” in International Conference on Robotics and
Automation(ICRA’04), 2004, pp. 2386–2392.

[12] T. Asfour, K. Regenstein, P. Azad, J. Schröder, A. Bierbaum,
N. Vahrenkamp, and R. Dillmann, “Armar-III: An integrated humanoid
platform for sensory-motor control.” in IEEE-RAS International Con-
ference on Humanoid Robots (Humanoids 2006), December 2006, pp.
169–175.

[13] D. Bertram, J. Kuffner, R. Dillmann, and T. Asfour, “An integrated
approach to inverse kinematics and path planning for redundant
manipulators.” in Proceedings of the IEEE International Conference
on Robotics and Automation. IEEE, May 2006, pp. 1874–1879.

[14] D. Hsu, J.-C. Latombe, and R. Motwani, “Path planning in expansive
configuration spaces.” International Journal of Computational Geom-
etry and Applications, vol. 9, no. 4/5, pp. 495–, 1999.

[15] V. Boor, M. Overmars, and A. Stappen, “The Gaussian sampling
strategy for probabilistic roadmap planners.” in IEEE International
Conference on Robotics and Automation, 1999, pp. 1018–1023.

[16] G. Sanchez-Ante, “Single-query bi-directional motion planning with
lazy collision checking.” Ph.D. dissertation, ITESM, Campus Cuer-
navaca, Mexico, 2001.

[17] A. T. Miller, “Graspit!: a versatile simulator for robotic grasping.”
Ph.D. dissertation, 2001.

[18] E. Larsen, S. Gottschalk, M. C. Lin, and D. Manocha, “Fast proximity
queries with swept sphere volumes.” Department of Computer Science,
University of North Carolina, Tech. Rep., 2000.

[19] A. Yershova and S. M. LaValle, “Improving motion planning al-
gorithms by efficient nearest-neighbor searching.” Transactions on
Robotics, vol. 23, pp. 151–157, February 2007.


