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ABSTRACT
In this paper, we present a system to monitor a subject’s Visual Fo-
cus of Attention (VFOA) based on his/her head poses. The system
first detects faces from video images and determines if the detected
face is a frontal or profile face. If a frontal face is detected, the sys-
tem further estimates the head pose from the face image. Instead
of estimating continuous head poses, we formulate the problem as
a classification problem and classify the head pose into one of a
predefined number of poses using a local discriminant projection
(LDP) method. The LDP method uses two graphs for the model-
ing the head pose embedding, one is the nearest native neighbor
graph, the other is the nearest invader graph. We evaluate the LDP
method in CAS-PEAL Database with 21 head poses and a realistic
data set with 9 poses collected from our application scenario. The
experimental results indicate that our approach outperforms other
methods. We describe the implementation of the system with an
application in monitoring customers’ VFOA in a display window
that displays items for sale in a shop. The system can be used to
index and retrieve information for customer analysis.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; I.4.9
[Image Processing and Computer Vision]: Applications

General Terms
Algorithms

Keywords
Visual Focus of Attention, Local Discriminant Projection, attention
information retrieval, head pose estimation, face detection, eye lo-
calization

1. INTRODUCTION
Focus of Attention refers to the mind’s ability to direct its inner
awareness upon a particular target. It, however, would be very
difficult to measure focus of attention based on such a definition.
Fortunately, the literature suggests that humans are generally inter-
ested in what they look at. This has, for example, been demon-
strated in Yarbus’ classical experiments in which a subject’s eye
movements were tracked when they watched a painting [20]. Re-
cent user studies have further provided strong evidence that people
naturally look at objects or devices with which they are interacting
[12] [2]. Therefore, in practice, people usually use visual focus of
attention (VFOA) which is defined as the direction at which people
look to represent their focus of attention. Many human-computer
interaction applications require estimate VFOA. One of such appli-
cations is to monitor VFOA of a subject in front of a large display,
e.g., a display window at a shop or shopping mall. That is, we
would like to analyze to which part(s) of the shopping window the
subject has paid her/his attention. In this research, we are interested
in monitoring VFOA of subjects in a freely moving environment.

The problem requires estimate a subject’s gaze directions in an un-
constrained environment. There are two contributing factors in the
formation of where a person looks at: head orientation and eye ori-
entation. Head orientation is considered as a sufficient cue to detect
a person’s direction of attention. Relevant psychological literature
offers a number of convincing arguments for this approach and the
feasibility of this approach is demonstrated [9].

Our VFOA problem is an extension of the traditional one in, at
least, two respects. First, a subject’s mobility is unconstrained,
i.e., subjects can freely move in the environment. This differs
from meeting applications where participants are seated in rela-
tively fixed locations. Second, there are several potential targets in
the environment where subjects may pay their visual attention. For
example, a shopping window can display many different products
in different locations of the widow. This is different from detection
of attention to an advertisement in the scene where there is only one
target available [16]. As a result, the subject’s target of attention
may change, or as the subject moves in the scene, his/her appear-
ance may change as he attempts to keep his attention on a specific
target. Unconstrained motion also limits the resolution of the sub-
ject in the video, as a wide field of view is necessary to capture



multiple subjects over an area of interest. Limited resolution of the
subject’s head makes estimating his/her VFOA more difficult (and
impossible in some cases) when a subject is at a distance from the
camera.

In this paper, we approach the problem using a hierarchical method.
We first detect faces from video images and determine if the de-
tected face is a frontal or profile face. If a frontal face is detected,
we will further estimate the head pose from the face image cropped
based on eye location. Instead of estimating continuous head poses,
we formulate the problem as a classification problem and classify
the head pose into one of a predefined number of poses using a lo-
cal discriminant projection (LDP) method. The LDP method uses
two graphs for modeling the head pose embedding, one is the near-
est native neighbor graph, the other is the nearest invader neighbor
graph. We describe the implementation issues of the system includ-
ing robust face and eye detection. We evaluate the LDP method in
CAS-PEAL Database [5] with 21 head poses and a realistic data set
with 9 poses. The experimental results indicate that our approach
outperforms other methods.

The rest of the paper is organized as follows. Section 2 describes
problem and related work. Section 3 discusses the LDP method for
head pose estimation in detail. Section 4 presents the implementa-
tion of the system and Section 5 reports experimental results. We
conclude the paper in Section 6.

2. PROBLEM DESCRIPTION AND RELATED
WORK

In this research, we are interested in developing a system that can
monitor where a customer are paying attention to in a display win-
dow. Our goal is to estimate VFOA from video images in an uncon-
strained environment where subjects can freely move in the scene.
We solve the problem using a hierarchical approach: we first de-
termine whether a subject is facing the window and then determine
which part of the widow the subject is paying attention to if the
subject is facing the window. Since our application does not re-
quire continuous values of head poses, we divide the space into a
predefined number of regions and estimate the head pose pointed
to one of these regions to enhance the robustness and efficiency of
head pose estimation. We formulate the head pose estimation as a
classification problem and propose to use the LDP method because
we are dealing with a large change in head pose which resides in a
nonlinear manifold.

Our problem is similar to an evaluation task defined by 2002 work-
shop on Performance and Evaluation of Tracking Systems (PETS),
which provided data for depicting people passing in front of a shop
window, including the number of people in front of the window and
the number of people looking at the window [13]. However, the
task was focused on body motion only. Body motion alone does not
contain enough information to accurately determine VFOA. Smith
et al. attempted to monitor the attention of passers-by to an out-
door advertisement [16]. The system assumed only one target in
the scene.

Our approach requires estimate head poses. The existing methods
for head pose estimation can be broadly divided into three cate-
gories: (1) Shape-based geometric analysis [8]: The generic face
model or geometric structure is first defined. Then the geomet-
ric parameters are used to estimate head pose. However, defin-
ing the face geometry in side views still remains challenge. (2)
Appearance-based methods [10]: The method takes the head esti-

mation problem as a pattern classification task. The training data
are divided into several subsets for novel view classification. The
limitation of these approaches is the weak generalization. Most
of these methods can only estimate head pose or face view in a
limited range. (3) Manifold learning and dimensionality reduction
[3] [14]. During the last few years, a large number of approaches
have been proposed for constructing and computing the embed-
ding. The nonlinear methods, such as locally linear embedding
(LLE) [15], Laplacian eigenmaps [1], Isomap [18], focus on pre-
serving the geodesic distances which reflect the real geometry of
the low-dimensional manifold. The linear methods, such as prin-
cipal component analysis (PCA), multidimensional scaling (MDS)
[3], locality preserving projections (LPP) [6] and linearized LEA
[4], L-LDA [11], locality discriminant indexing(LDI) [7] are evi-
dently effective in observing the Euclidean structure for vision ap-
plications. The set of all facial images in three angles of rotation
(yaw, tilt, and roll) is intrinsically a 3D manifold in the image space.
One main drawback of these techniques is that they are sensitive to
face alignment, the output from the face detectors are usually not
well aligned, which will cause the deterioration in the accuracy of
pose estimation.

3. HEAD POSE ESTIMATION USING THE
LDP

A core technology in our approach is robust head pose estima-
tion using the LDP method. In this section, we describe the LDP
method in detail. A set of face images is represented as a matrix
X = [x1, x2, · · · , xN ], xi ∈ Rm, whereN is the number of sam-
ples andm is the dimension of the feature space. The class label
of the samplexi is ci ∈ {1, 2, · · · , C}, whereC is the number
of classes, We want to find projection matrixW which maps an
m dimensional data space to ad-dimensional subspace (d ¿ m ):
W T : Rm → Rd.

3.1 Manifold Modeling for Discriminant Anal-
ysis

Two graphs are introduced to construct class-specific manifold, the
k nearest-native graph and invader graph. It is natural to model the
within-class local structure by a graph that puts an edge between
each sample and itsk nearest natives. Therefore, we define the
k nearest-native graph as a weighted graphGn = {V, Sn}, with
V = {xi}N

i=1, and

Sn
ij =

{
e
−‖xi−xj‖2

t , xi ∈ Nk(xj), xj ∈ Nk(xi)
0, otherwise.

(1)

whereSn is a sparse symmetricN ×N matrix withSn
ij weighting

the edge connecting verticesxi andxj ,Nk(xi), calledk nearest-
native neighbors ofxi, is the set ofk nearest neighbors having the
same label withxi. However, class-specific manifold structures are
usually overlapped in the high-dimensional space. To effectively
characterize the manifold overlap, the invader graph is introduced,
which is denoted as a weighted graphGf = {V, Sf}, with V =
{xi}N

i=1,

Sf
ij =

{
e
−‖xi−xj‖2

t , xi ∈ Ik(xj), xj ∈ Ik(xi)
0, otherwise.

(2)

where the setIk(xi) composes of the invaders ofxi. The in-
vaders ofxi have two properties: 1) they reside in the local spher-
ical spaceRm(xi) = {x :‖ x − xi ‖< εi} with the radius as
εi = maxxj∈Nk(xi) ‖ xj − xi ‖; and 2) their labels are different
from xi.



3.2 Local Discriminant Criterion
It is an ideal case to make each sample and itsk-nearest neighbors
always belong to the same class in the projected space and its in-
vaders far apart. Based on this locality discriminating criterion, the
optimal projection vector can be determined as follows:

min

N∑
i=1

N∑
j=1

(yi − yj)
2Sn

ij , (3)

max

N∑
i=1

N∑
j=1

(yi − yj)
2Sf

ij . (4)

SupposeW is a transformation vector,Y = W T X . Finally, by
combining the two objective functions (3) and (4), the LDP crite-
rion is given by

w∗ = arg min
w

∑
ij(w

T xi − wT xj)
2Sn

ij∑
ij(w

T xi − wT xj)2S
f
ij

= arg min
w

wT XLnXT w

wT XLfXT w
. (5)

The numerator characterizes the intra-class compactness by the sum
of the distance between each data and itsk-nearest natives, while
the denominator models the inter-class overlap by the sum of dis-
tance between each data and its invaders. In equation (5),Ln =
Dn − Sn is the Laplacian of the native graphGn, and theDn is
a diagonal matrix withDn

ii =
∑

j Sn
ij , andLf = Df − Sf is

the Laplacian of the invader graphGf , and theDf is a diagonal
matrix with Df

ii =
∑

j Sf
ij . The vectorsw∗ that minimize the ob-

jective function are given by minimum eigenvalue solutions to the
generalized eigenvalue problem. From the above description, the
Local Discriminant Projection (LDP) algorithm can be described
as follows.

1. PCA projection. For a high-dimensional application, we first
project a data set{xi}N

i=1 into ann-dimensional PCA subspace by
retaining a certain portion of energy. For simplicity, we still usexi

to denote the data projected in the PCA subspace in the following
steps, letWPCA ∈ Rm×n denote the transformation matrix of
PCA.

2. Constructing thek nearest native neighbor graph and invaders
neighbor graph according to equations (1) and (2).

3. Solving locality discriminant criterion in equation (5). Com-
puting the eigenvector and eigenvalue of the following generalized
eigenvalue problem:

XLnXT w = λXLfXT w. (6)

4. Outputting the transformation matrix. Letw0, w1, · · · , wk−1

be the solutions of (6), eigenvalues ordered in a descent order0 ≤
λ0 ≤ λ1 ≤ · · · ≤ λn−1, andd(d ≤ n)be the output dimension.
We have

WLDP = [w0, w1, · · · , wd−1]. (7)

Then the transformation matrix is:

W = WPCA •WLDP . (8)

4. THE SYSTEM IMPLEMENTATION

Figure 1: An illustration of the VFOA system architecture.

In this section, we discuss system implementation issues. Our ap-
plication scenario is to monitor customers’ VFOA in a display win-
dow that displays items for sale in a shop. A video camera is in-
stalled inside of the display window and faced to outside of the
window. If a subject is far away from the window (e.g. beyond
3 meters), the system only detects if the subject pays attention to
the window by frontal/profile face detection. If a subject is within
3 meters from the window, the system will perform more detailed
focus of attention analysis. Fig.1 illustrates the VFOA system ar-
chitecture. The system performs face detection from input video
images. The system provides information of detected faces (loca-
tions, frontal/profile) in each frame. If a frontal face is detected, the
system will further perform eye detection within the detected face.
The eye locations are used to crop a face region and align the face
for pose estimation. The head pose is classified by the trained LDP
model. The LDP model is trained off-line in advance. The system
runs in real-time. Besides the LDP method, robust detection of face
and eye plays very important role in our system. We describe the
implementation of face and eye detection in the rest of this section.

4.1 Face Detection
We employ Haar cascade classifiers as described by Viola and Jones
for detecting faces from input images [19]. The framework uses
Haar basis-like features and an AdaBoost optimized cascade struc-
ture to perform efficient and fast object detection. For our appli-
cation, we have trained face detection module for upright faces,
in-plane 45 degree rotated faces and profile views. We utilize Haar-
like features introduced by Viola and Jones for their simplicity and
good performance in face detection tasks [19]. Even though Haar-
like features are simple numerous combinations, scales and possi-
ble locations are possible and yield a large set of possible features



to select from. Therefore AdaBoost is used to efficiently select the
most promising features. Thresholded Haar-like rectangle features
compose AdaBoost’s weak classifiers. By selecting and combining
the most discriminative features in several runs AdaBoost builds a
strong classifier that is far more powerful than the initial features.
In order to further improve runtime performance a cascade struc-
ture is utilized that forms a degenerate decision tree. The Classifi-
cation process is split into several stages that each stage uses fewer
weak features than would be necessary for a complete classifier.
Early stages are supposed to reject as many negative samples as
possible while accepting close to all positive samples, later stages
then perform finer differentiation. The cascade structure avoids
having to evaluate all necessary features for the whole classifier on
most image windows as most input images contain few windows
with positive samples. The face detection module outputs the loca-
tion and attribute (frontal or profile) of detected face(s). The system
utilizes the results to make decisions on the further processing.

4.2 Eye Detection
Within a detected face, the system will further detect locations of
eyes for face alignment. We use a coarse to fine approach to detect
location of eyes. The system first locates eyes using an iterative
thresholding method based on the assumption that the iris is the
darkest spot in the facial eye-region [17]. Due to the variation of
intensity of an eye region for different people and lighting condi-
tions, a simple threshold is insufficient. In our system, instead of
fixing a value, the threshold value is iteratively refined until a sig-
nificant dark point is located. Anthropometric constraints for eyes
are applied to limit the search regions within the detected face that
are most likely to contain eyes. These restraints are adapted for up-
right, rotated or profile detected faces. The output of the iterative
thresholding algorithm is back projected onto the input image and
used to mask the darkest image areas. Then, a mean-shift ascent is
utilized on the masked intensity image to locate the center of the
most dense, darkest area that is expected to be the iris. Usually,
mean-shift is applied to probability distributions to find the local
maximum of the distribution by gradient ascent. Here, it is applied
directly to the masked, intensity inverted image. It is assumed that
the iris and cornea represent a dark patch within the brighter sclera
with the iris being the local maximum in the inverted image. The
mean-shift ascent is initialized by calculating the centroid (center
of mass) of the iteratively thresholded image area.

5. EXPERIMENTAL RESULTS
We evaluate performances of our system using two different datasets:
the CAS-PEAL face database and a self collected dataset. The
CAS-PEAL face database contains 99,594 images of 1,040 individ-
uals (595 males and 445 females) with varying Pose, Expression,
Accessory, and Lighting (PEAL). For our purpose, we selected
images with pose variations described by pan angles of [−45 ◦,
−30 ◦,−15 ◦, 0 ◦, 15 ◦,30 ◦, 45 ◦] and tilt angles of [−45 ◦, 0 ◦,
45 ◦], which are 21 poses. From the CAS-PEAL face database, we
randomly selected 300 individuals for the training set, and other
individuals for testing. Various poses with different pan and tilt
angles for a subject are shown in Fig.2. We use the CAS-PEAL
dataset to evaluate performances of eye detection and the LDP method
because the dataset has provided ground truth of the data.

5.1 Eyes Localization Accuracy
The accuracy of eye localization is crucial for face alignment and
head pose estimation. We tested the accuracy of the eye detection
module using 21,840 images in 21 head poses form the CAS-PEAL

Figure 2: An illustration of 21 head poses of one subject in the
CAS-PEAL dataset.
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Figure 3: The histogram of the distance between the estimated
eye location and ground truth vs eye width.

dataset. Since a pupil is movable inside of an eye, we use a rela-
tive error of a half of eye width to measure the accuracy, i.e., we
consider the output of the eye detection is correct if it is within the
range of the eye. The experiment shows that 85% points of the out-
put are correct within 0.5 eye width. Fig.3 shows the histogram of
distance between detected eye locations and ground truth v.s. eye
width.

5.2 Head Pose Estimation
For the pose estimation evaluation, we carried out three experi-
ments. In the first experiment, we provided the image patches
cropped at the manually marked eyes as input, so that we can eval-
uate how the head pose estimators performs when there is no error
caused by the misalignment. In the second experiment, the eyes
are automatically localized and the head pose estimator uses face
image patches cropped from locations of automatically localized
eyes. In the third experiment, the head pose estimator uses faces
cropped by the face detector only.

In the first experiment, we also compare our method with LDA
(Linear Discriminant Analysis) and LPP methods. Fig.4 shows a
comparison of three methods with dimensionality reduction. Our
LDP method outperforms other methods in all cases.
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Figure 4: A comparison with other methods.
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Figure 5: Performances of head pose estimation using different
face alignment methods.

Fig.5 shows performances of head pose estimation using different
face alignment methods. It is clear that face alignment plays an
important role in pose estimation: the face aligned from the man-
ual eye localization performs the best, and the face aligned from
the face detection algorithm is the worst.x-coordinate is corre-
sponding to the head pose in Fig.2. It is interesting to see that the
automatic eye localization method performs better than the manual
eye localization method in some frontal positions when eyes can be
located correctly.

5.3 VFOA Application Performance
To evaluate the performance of our system in estimating customers’
VFOA in the display window scenario, we have collected a dataset
in a simulated setting. We put 9 marks on a large display window in
a commercial street and ask subjects to pass to stand in front of the
window looking at these 9 marks. These marks roughly correspond
to the view angles of tilt degree−30 ◦, 0 ◦, 30 ◦, and pan angles

Figure 6: Retrieved top-right VFOA images.

−30 ◦, 0 ◦, 30 ◦. We set a Sony DV camera inside of the widow and
recorded 2 sequences of sunny/cloudy conditions and 12 subjects.
Seq1 is under the sunshine condition while Seq2 is under the cloudy
condition. In the evaluation, we query how many times the top-
right item have been paid attention, Fig 6 illustrates the result of
retrieved images for up-left head pose.

we also randomly selected 638 frames of images from the recorded
video. Table 1 reports the evaluation results under different weather
conditions. Seq2 is better than Seq1 because the eye location is
more correct in cloudy condition. Fig.7 shows some examples of
VFOA detection results that output from the system interface. The
red rectangles denote the detected faces, and the green arrows indi-
cate the classified directions of VFOA.

Table 1: Comparison under different conditions( # of Frames)
Seq Total

frames
face de-
tected

eye de-
tected

corrected
VFOA

Seq1 400 381(95.3%) 351(87.8%) 302(75.5%)
Seq2 238 228(95.8%) 223(93.7%) 203(85.3%)

6. CONCLUSIONS
In this paper, we have presented a system for monitoring customers’
VFOA in a display window using head pose estimation. Our work
makes contributions in term of problem formulation and head pose
estimation using the LDP method. Our approach to the problem has
balanced robustness, accuracy, and speed for this particular applica-
tion. We have evaluated the performance in CAS-PEAL Database
with 21 head poses and a self collected dataset with 9 head poses in
a realistic application setting. The experimental results indicate that
our approach outperforms other methods in estimating head poses
and show promising performance using a fully automatic system in



Figure 7: Examples of VFOA detection from video sequences (the red frame denotes the detected face, the green arrow denotes the
attention).

monitoring customers’ VFOA in a display window. We will further
improve the accuracy of the system and apply the system to a more
realistic environment. The developed technology can be applied to
customer analysis and other multimedia applications.
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