0-7803-9479-8/05/$20.00 © 2005 IEEE

SESSION INDEPENDENT NON-AUDIBLE SPEECH RECOGNITION USING SURFACE
ELECTROMYOGRAPHY

Lena Maier-Hein, Florian Metze, Tanja Schultz, and Alex Waibel

Interactive Systems Labs
Universitit Karlsruhe (TH), Carnegie Mellon University
{lenaltanja}@ira.uka.de

ABSTRACT

In this paper we introduce a speech recognition system based on
myoelectric signals. The system handles audible and non-audible
speech. Major challenges in surface electromyography based speech
recognition ensue from repositioning electrodes between record-
ing sessions, environmental temperature changes, and skin tissue
properties of the speaker. In order to reduce the impact of these
factors, we investigate a variety of signal normalization and model
adaptation methods. An average word accuracy of 97.3% is achie-
ved using seven EMG channels and the same electrode positions.
The performance drops to 76.2% after repositioning the electrodes
if no normalization or adaptation is performed. By applying our
adaptation methods we manage to restore the recognition rates to
87.1%. Furthermore, we compare audibly to non-audibly spoken
speech. The results suggest that large differences exist between
the corresponding muscle movements. Still, our recognition sys-
tem recognizes both speech manners accurately when trained on
pooled data.

1. INTRODUCTION

Automatic Speech Recognition (ASR) has developed into a popu-
lar technology and is being deployed in a wide variety of every day
life applications, including personal dictation systems, call cen-
ters or mobile phones. Despite the various benefits a conventional
speech-driven interface provides to humans, there are three ma-
jor drawbacks: Firstly, the audible (i.e. acoustic) speech signal
prohibits a confidential conversation with or through a device. Be-
sides that, talking can be extremely disturbing to others, especially
in libraries or during meetings. Secondly, the speech recognition
performance degrades drastically in adverse environmental condi-
tions such as in restaurants, cars, or trains. Acoustic model adapta-
tion can compensate for these effects to some degree, however the
pervasive nature of mobile phones challenges this approach. Per-
formance is also poor when sound production limitations occur,
like under water. Last but not least, conventional speech-driven
interfaces cannot be used by speech handicapped people, for ex-
ample those without vocal cords.

To overcome these limitations, alternative methods are being
investigated, which do not rely on an acoustic signal for ASR.

This work has been partly funded by the European Union under
IST project No. FP6-506909 “CHIL — Computers in the Human In-
teraction Loop”, http://chil.server.de. The authors wish to
thank Christoph Mayer, Marcus Warga, Peter Osztotics and Artus Krohn-
Grimberghe for their valuable contributions to this study.
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Chan et al. [1] proved that the myoelectric signal (MES) from ar-
ticulatory face muscles contains sufficient information to discrim-
inate a given set of words accurately. This holds even when the
words are spoken non-audibly, i.e. when no acoustic signal is pro-
duced [2].

To date, the practicability of MES based speech recognition
is still limited. Firstly, the surface electrodes require a physical
contact with the speaker’s skin. Secondly, experiments are still
restricted to isolated word recognition. Finally, today’s systems
are far from being robust, since they only work in matching train-
ing and test conditions. Just like conventional speech recognizers,
the MES based systems are heavily influenced by speaker depen-
dencies, such as speaking style, speaking rate, and pronunciation
ideosyncrasies. Beyond that, the myoelectric signal is affected by
even slight changes in electrode positions, temperature or tissue
properties [3]. We will refer to this phenomenon as session de-
pendence in analogy to the channel dependence of a conventional
speech recognizer resulting from the microphone quality, the envi-
ronmental noise, and the signal transmission of the acoustic signal.

According to our experience the loss in performance caused
by session dependence in MES based speech recognition is sig-
nificantly higher than that resulting from channel conditions in
conventional systems. Despite this, only session dependent MES
based speech recognition systems have been developed so far. In
this paper we will address the session dependence by exploring
methods for adjusting data from a new recording session to given
training material from previous recording sessions.

The most important advantage of using the MES for speech
recognition is the fact that it does not rely on the speaker to pro-
nounce the words audibly. Coleman et al have established that the
speech motor control plans for whispered speech and vocalized
speech are similar [4]. Yet, no study has investigated the differ-
ences between audible and non-audible speech relevant for MES
based speech recognition. This issue is therefore the second focus
of our work.

2. EMG BASED SPEECH PROCESSING

2.1. Surface EMG Measurement

Electromyography (EMG) is the process of recording the electrical
activity of a muscle. When a muscle fiber is activated by the central
nervous system, small electrical currents in form of ion flows are
generated. Since electrical current moves through a resistance, the
bodily tissue, it creates an electrical field. The resulting potential
differences can be measured between certain regions on the body
surface. A surface Electromyogram is the record obtained from
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measuring these voltages over time. The following equipment is
needed to measure surface EMG (sEMG) [5]:

Surface electrodes convert the ionic currents generated by mus-
cle contraction into electronic currents that can be fed into elec-
tronic devices. While two detection electrodes pick up the desired
signal the ground electrode provides a common reference.

When detecting an EMG signal, amplification is necessary to
optimize the resolution of the digitizing equipment. A differential
amplifier subtracts the signals from two detection sites and ampli-
fies the difference voltage between its two input terminals. As a
consequence, signals common to both electrodes - such as noise
originating far away from the detection sites - ideally produce a
zero output, whereas local EMG signals are amplified. This way
the signal-to-noise ratio is maximized.

A high-pass filter is applied to avoid aliasing artefacts whereas
a low-pass filter is used to reduce movement artefacts in the sig-
nals.

2.2. Related Work

The body of published studies testing the potential of EMG for
speech recognition is surprisingly small. Using an approach sim-
ilar to that proposed here, Chan et al. [1, 6] proposed to perform
ASR on the myoelectric signal for aircraft pilot communication.
Five bipolar electrodes were embedded in pilots’ oxygen masks
and the myoelectric signals were recorded during audible pronun-
ciation of the digits “zero” to “nine”. An acoustic signal was
also recorded and used to segment the utterances. The authors re-
ported a maximum word accuracy of 93% for a linear discriminant
analysis (LDA) classifier and of 86% for a hidden Markov model
(HMM) classifier [6]. Moreover, they showed the potential of the
MES to augment conventional speech recognition systems [1].

Jorgensen et al. [2, 7] investigated the recognition of non-
audible speech. Their idea is to intercept nervous signal control
signals sent to speech muscles using surface EMG electrodes placed
on the larynx and sublingual areas below the jaw. Initially, they
demonstrated the potential of non-audible speaker dependent iso-
lated word recognition based on the MES with a Neural Network
classifier [2]. They reported recognition rates of 92% for six con-
trol words [2] and of 73% on an extended vocabulary which addi-
tionally contains the ten English digits [7]. Recently, Jorgensen et
al. expanded their earlier isolated word experiments to the recog-
nition of vowels and consonants as a first step towards phoneme
based speech recognition. Moreover, they developed a web browser
interface that is controlled by myoelectric signals [7].

Manabe et al. [8] proposed the use of ring-shaped electrodes
wrapped around the thumb and two fingers for non-audible speech
recognition. In order for the electrodes to detect SEMG signals
from facial muscles the fingers need to be pressed against the face
in a specified manner. The authors investigated conventional ASR
techniques for the recognition of the ten Japanese digits, achieving
a maximum recognition rate of 64% [9]. They hope to perfect the
system such that it develops to a mobile interface that can be used
in both, silent and noisy environments.

3. METHODS

3.1. Data Acquisition

In this study, isolated word recognition was performed on a vocab-
ulary consisting of the ten English digits “zero” to “nine”. Three
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Fig. 1. Positioning for electrodes EMG1-EMG7. Section 3.1 enu-
merates the associated muscles.

subjects, S1 (female, mother-tongue: German), S2 (male, mother-
tongue: Hungarian), and S3 (male, mother-tongue: German), with
no known speech disorders participated in the study. Each sub-
ject took part in five recording sessions on four different days,
in morning and afternoon sessions. In four of their sessions the
subjects pronounced the words non-audibly, i.e. without produc-
ing a sound. In the remaining sessions ordinary (i.e. audible)
speech was recorded. Each audible session corresponds to one
non-audible session in that the two were recorded in series with-
out the electrodes being moved.

In each recording session forty exemplars of each vocabulary
word and forty exemplars of silence were recorded. The order of
the words was randomly permuted and presented to the subject one
at a time. A push-to-talk button controlled by the subject was used
to mark the beginning and the end of each utterance. Subjects
were asked to begin speaking approximately lsec after pressing
the button and to release the button about 1sec after finishing the
utterance. When the pseudo-word silence appeared they were sup-
posed keep all facial muscles relaxed for approximately 2sec.

EMG signal data was collected for each of the subjects using
seven pairs of Ag/Ag-Cl electrodes. A self-adhesive button elec-
trode placed on the left wrist served as a common reference. As
shown in Figure 1 the electrodes were positioned such that they
obtain the EMG signal of six articular muscles: the levator anguli
oris (EMG?2,3), the zygomaticus major (EMG2,3), the platysma
(EMG4,5) the depressor anguli oris (EMGS), the anterior belly
of the digastric (EMG1) and the rongue (EMG1,6,7) [10, 6]. For
three of the seven EMG channels (EMG2,6,7) a classical bipolar
electrode configuration with a 2cm center-to-center inter-electrode
spacing was used. For the remaining four channels one of the
detection electrodes was placed directly on the articulatory mus-
cles and was referenced to either the nose (EMG1) or to both ears
(EMG3,4,5) (Figure 1). The positioning of the electrodes was op-
timized in previous experiments, not reported here.

In order to ensure repeatability of electrode placements we
have produced a gypsum mask for every speaker. Holes in the
masks marked the electrode positions to be used. We found in pre-
vious experiments that using the mask for position identification
gives slightly more reliable across-sessions results than using tape



measure.

For the purpose of impedance reduction at the electrode-skin
junction a small amount of electrode gel was applied to each elec-
trode. All electrode pairs were connected to a physiological data
recording system [11]. EMG responses were differentially ampli-
fied, filtered by a 300Hz low-pass and a 1Hz high-pass filter and
sampled at 600Hz. In order to avoid loss of relevant information
contained in the signals we did not apply a SOHz notch filter which
can be used for the removal of line interference.

3.2. Feature extraction

The signal data for each utterance is transformed into feature vec-
tors. For each channel, 18-dimensional channel feature vectors are
extracted from 54ms observation windows with 4ms overlap. In
terms of the number of coefficients per window this corresponds
to a 32ms window at a sampling rate of 1000Hz which was used
in previous experiments.

In order to obtain channel feature vector o;; for channel j and
observation window ¢ the windowed Short Time Fourier Trans-
form (STFT) is computed. Delta coefficients serve as the first 17
coefficients of 0;;. The 18th coefficient consists of the mean of the
time domain values in the given observation window. The com-
plete feature vector o; for the observation window ¢ is simply the
concatenation of the channel feature vectors o;;. The choice of
these features is the result of intensive experiments in previous
recording sessions. Ordinary STFT coefficients, cepstral coeffi-
cients, LPC coefficients, and the root-mean-squared value among
others were also considered as features but did not add to the over-
all performance.

3.3. Feature Training

First order HMMs with Gaussian mixture models are used in most
conventional ASR systems as classifiers because they are able to
cope with both, variance in the time-scale and variance in the shape
of the observed data. We trained a five-state left-to-right Hidden
Markov Model A; with 12 Gaussians per state for every word W
in the vocabulary using the Expectation Maximization (EM) algo-
rithm. The number of iterations was chosen to be N = 4.

To recognize an unknown signal the corresponding sequence
of feature vectors (or) was computed. Next, the Viterbi align-
ment for each vocabulary word W) was determined and the word
corresponding to the best Viterbi score was output as the hypothe-
sis. Feature extraction, HMM training, and signal recognition were
performed using the Janus Recognition Toolkit (JRTk) [12].

4. EXPERIMENTS AND RESULTS

To ensure comparability of results from different experiments the
same number of samples was used for each classifier training,
namely thirty exemplars of each word. Whenever training and test-
ing were performed on the same session(s), a round robin proce-
dure was applied to get reliable results. When the testing session
was different from the training session(s), the training data was
split into a disjoint set of training sets each satisfying the condition
from above (i.e. each containing thirty exemplars of each vocabu-
lary word) and the results for the training sets were averaged.
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4.1. Baseline system

The system described in section 3 serves as our baseline system.
Table 1 shows the word accuracies for within-session testing for
each speaker using different numbers of channels for recognition.
The term within-session refers to a matching training/test condi-
tion, i.e. training and testing are performed on the same session.
The results for each speaker are averaged over the corresponding
four non-audible sessions. Due to the fact that we applied the
round robin algorithm for within-session testing (number of ses-
sions sV, number of round robin sets N and used thirty samples
per word for training the classifier (number of words per set u/V),
we had atotal of SN - 7N -uN = 4-4-100 = 1600 test samples
per speaker. The table presents the results for (a) each individual
channel, (b) the combination of all channels, and (c) the best com-
bination of £ = 2, 3,4, 5, 6 channels. We used a greedy procedure
to identify the best combination of k channels: Initially, we sim-
ply chose the channel yielding the best individual within-session
results. We then added the remaining channels one by one, in the
order that gave the best (within-session) performance when com-
bined with the already selected channels.

| Channels H S1 [ S2 [ S3 [ Avg ‘

Individual Channels

EMG1 742 | 92.1 | 774 | 81.2
EMG2 64.1 | 90.7 | 69.4 | 74.7
EMG3 76.1 | 93.8 | 72.9 | 81.0
EMG4 612 | 83.1 | 71.6 | 71.9
EMGS5 624 | 73.4 | 63.6 | 66.5
EMG6 63.6 | 644 | 52.3 | 60.1
EMG7 59.8 | 66.3 | 60.0 | 62.0
Avg EMG1-EMG7 65.9 | 80.5 | 66.7 | 71.1
Channel Combination

Best 1 (EMG]1) 742 | 92.1 | 774 | 81.2
Best 2 (EMG1,3) 935 | 97.6 | 90.1 | 93.7
Best 3 (EMG1,3,6) 97.1 | 98.1 | 91.3 | 95.5
Best 4 (EMG1,3,4,6) 97.5 | 98.3 | 934 | 964
Best 5 (EMG1,2,3,4,6) 97.3 | 98.6 | 95.5 | 97.1
Best 6 (EMG1,2,3,4,5,6) || 97.4 | 98.8 | 96.2 | 97.4
All 7 channels 97.2 | 98.8 | 96.0 | 97.3

Table 1. Within-session word accuracies (in %) averaged over four
sessions for each speaker.

Speaker S2 achieved the best recognition results. This speaker
had already recorded several non-audible sessions before partic-
ipating in this study. He stated that he had developed a particu-
lar speaking style for non-audible speech over time. In fact, we
noticed for all speakers that an increasing level of experience im-
proved the performance. The results in Table 1 indicate a signif-
icant variation in performance for the individual channels. Chan-
nels EMGI1 and EMGS3 yield the best recognition results for all
speakers. These two channels correspond to different muscle groups,
and therefore provide orthogonal information. The results from the
best channel combination in table 1 reveal that it is crucial to ap-
ply more than one electrode (highly significant difference between
Best 1 and Best 2). Even between 2 and 3 electrodes we see a
highly significant performance increment on the 9.56E-05 - 100 %
level, while the performance differences for 5, 6 or 7 electrodes
are insignificant.



Table 2 shows the within-session and naive across-sessions re-
sults for speaker S3. Naive across-sessions testing refers to test-
ing without any normalizations and adaptations. The large perfor-
mance differences between within-session results (values on the
diagonal in bold face) and across-sessions results (values in the
remaining cells) illustrate the problem of session dependence.

sessionl  sessionII  session III  session IV
session | 94.5 74.3 83.0 58.8
session II 67.5 93.5 80.5 73.8
session IIT 48.8 59.5 97.5 77.8
session IV 60.5 67.0 91.8 98.5

Table 2. Word accuracies (in %) for within-session testing and
naive (no normalization) across-sessions testing for speaker S3 us-
ing all seven channels. Training session (row), Test session (col-
umn).

The results for naive across-sessions testing for all speakers
are summarized in Tables 3 and 4 for all channels and for indi-
vidual channels respectively (method=BASE). The numbers rep-
resent the average word accuracy when one session is used for
training and another session is used for testing. Thus, in Table 3
each cell corresponding to method BASE represents the results for
sN - (sN — 1) = 4-3 = 12 experiments. In Table 4 on the other
hand, the entries represent the results for ¢N - sN - (sN — 1) =
7 -4 -3 = 84 experiments, where c/N represents the number of
channels.

Again, the results for across-sessions testing are significantly
worse than those for within-session testing. We address this cru-
cial problem of session dependence in the next section and will
show that we achieve significant improvement across sessions by
normalizing data and adapting our models.

4.2. Session Independence

As already mentioned above the signal obtained from surface EMG
measurements depends on a number of different factors which can-
not be held constant over several recording sessions. Exact elec-
trode positioning plays a particularly crucial role [3]. Although
gypsum masks were used to improve placement repeatability, the
poor across-sessions results indicate existing variation in the posi-
tioning. In fact, experiments showed an across-sessions deviation
of up to Smm. Furthermore, other factors like the amount of ap-
plied electrode gel may vary from session to session. Moreover,
the speakers’ speech patterns produced on different days may dif-
fer from each other. Subject S3, for example, stated that he had
the impression that he pronounced the non-audibly spoken words
differently in different recording sessions.

We investigated the following normalization and adaptation
procedures to compensate for the described session dependent vari-
ations:

1. Session Combination (SC): The data to train the classifiers
is shared across three sessions, each contributing the same
number of samples (ten samples per vocabulary word).

2. Session Selection (SS): A conventional HMM classifier C;
is trained for every training session ¢. The incoming un-
known signal is then decoded by each classifier C};, giving
a hypothesis W; and a corresponding Viterbi score v;. The
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word with the overall best viterbi score is output as the hy-
pothesis. Whyp, = Wi | = arg maxy, vy,.

3. VN in combination with SC (SC&VN): For each training
session two normalization vectors are computed; one con-
taining the mean of each feature vector coefficient for the
session’s training samples and one containing the variance
of each feature vector coefficient. Similarly, two normaliza-
tion vectors are computed for all test session data. Prior to
Viterbi path computation during training or testing, the ob-
tained vectors are applied to normalize the extracted feature
vectors o;.

. VN with enrollment data and SC (SC&VN _enr): Similar to
SC&VN but the normalization vectors for the test session
are computed on enrollment data rather than on the test data
itself. The enrollment data set consisted of two examples
for each vocabulary word including silence.

5. Supervised Feature Space Adaptation and SC (SC&FSA _sup):
Feature Space Adaptation (FSA) is a constrained Maximum
Likelihood (ML) transformation of input features. In anal-
ogy to Speaker Adaptive Training (SAT) [13] we perform
session adaptive training. First, an initial classifier is com-
puted on three training sessions. Then, we iteratively (a)
adapt each training session to the current classifier (begin-
ning with the initial classifier) and (b) recompute the clas-
sifier models using the adapted training data. After four
iterations, the final classifier is used for a supervised com-
putation of an adaptation matrix for the test data. During
testing, only adapted test data is used.

. Unsupervised FSA and SC (SC&FSA _unsup): Like SC&
FSA_sup but unsupervised adaptation is performed on the
test data using hypothesis from the computed classifier.

7. FSA with enrollment data and SC (SC&FSA _enr):
Like SC&FSA_sup but the adaptation matrix is computed
on an enrollment data set consisting of two samples per vo-
cabulary word including silence.

8. FSA with enrollment data, iterative learning, and SC (SC&
FSA_enr_it): Like SC&FSA_enr but the adaptation matrix
for the test data is recomputed after each hypothesis com-
putation for a test signal.

9. Combinations of the above methods: When both, VN and
FSA are applied, the features are first normalized and then
adapted to the model.

| Method H S1 [ S2 [ S3 [ Avg ‘
BASE 74.5 | 83.7 | 70.3 | 76.2
SC 84.6 | 90.1 | 77.6 | 84.1
SS 852 | 88.3 | 77.3 | 83.7
SC&VN 83.4 | 943 | 83.7 | 87.1
SC&VN_enr || 84.3 | 90.3 | 79.6 | 84.7

Table 3. Word accuracies (in %) for across-sessions testing using
all channels for recognition. Four non-audible sessions are used
for each speaker and the across-sessions results are averaged.

The data set for the experiments on session independence con-
sists of the four non-audible sessions from each speaker. We ex-
amined both, across-sessions recognition using all seven channels



(Table 3) and across-sessions recognition using only one channel
(Table 4). In the latter case, the word accuracies for the individ-
ual channels were averaged. Due to the fact that FSA compu-
tations led to numerical instabilities when high-dimensional data
was used (seven channels correspond to 126 dimensions), we did
not apply feature space adaptation based methods when using all
seven channels for recognition. Initial experiments using an LDA
for dimensionality reduction decreased word accuracies.

As shown in Tables 3 and 4, normalization and adaptation im-
prove performance for all speakers. In fact, the y-test confirms
that the results for BASE and SC are different at a significance level
of 2.93E-20% (table 3). The additional application of VN leads to
another increment on a significance level of 2.84E-03%.

| Method H S1 [ S2 [ S3 [ Avg ‘
BASE 37.0 | 53.5 | 41.3 | 43.9
SC 40.3 | 593 | 442 | 479
SS 434 | 614 | 48.6 | 51.1
SC&FSA _sup 425 | 62.7 | 47.7 | 51.0
SC&FSA _unsup 420 | 623 | 47.0 | 50.5
SC&FSA _enr 423 | 62.5 | 47.1 | 50.6
SC&FSA _enr_it 42.1 | 625 | 47.2 | 50.6
SC&VN 402 | 61.6 | 47.1 | 49.6
SC&VN_enr 38.8 | 60.5 | 455 | 48.3
SC&VN&FSA _sup 42.6 | 650 | 49.9 | 52.5
SC&VN&FSA _unsup 420 | 64.6 | 49.5 | 52.0
SC&VN _enr&FSA _enr 41.2 | 63.7 | 48.2 | 51.0
SC&VN_enr&FSA enr_it || 41.3 | 64.1 | 48.5 | 51.3

Table 4. Word accuracies (in %) for across-sessions testing using
one channel for recognition and four sessions from each speaker.
Each cell represents the average over all seven channels.

As in ASR, combining data from several sessions improves
performance considerably (Session Combination SC). Session Se-
lection (SS) leads to significant improvements in performance as
well. However, this method requires three times as much train-
ing material and the training of three times as many parameters.
Consequently, SS is not directly comparable to the other methods.
In fact, we obtained an improvement of 1.9% (1.5% absolute) for
all channels and and 4.6% (2.2% absolute) for individual channels
when we used the same amount of training material for combina-
tion (SC) as for selection SS (thirty samples per word from each
session). We therefore did not combine SS with VN and FSA. Ex-
periments suggest, however, that a similar increase in word accu-
racy as with SC can be achieved.

Both tables show a significant improvement in word accu-
racy when Variance Normalization (VN) is applied. However, the
method fails to increase word accuracies for speaker S1. We at-
tribute this to large deviations in recording lengths for speaker S1
which leads to significant deviations in the amount of silence rel-
ative to the amount of speech in different recording sessions. This
in turn leads to an unreliable estimation of the VN normalization
vector.

Feature Space Adaptation based methods increase the perfor-
mance for all speakers. Interestingly, supervised adaptation per-
forms equally well as unsupervised adaptation. Combining FSA
and VN leads to further improvements, yet the improvements are
not additive, i.e. both methods address similar artifacts. In or-
der to apply FSA based methods when several channels are used
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for recognition, we will explore feature dimensionality reduction
techniques for EMG speech data in the future.

Both, FSA_unsup and VN require the whole set of test data for
initial computations. Obviously, this is impractical. We therefore
examined the use of enrollment data for the computation of nor-
malization vectors and adaptation matrices. According to Table 4
only a small decrease in word accuracy results when enrollment
data is used. However, VN_enr performs significantly worse than
VN when all channels are used for recognition. Unfortunately, this
cannot be explained satisfyingly by the current experiments, we
therefore plan to investigate this more in the future.

In conclusion, we were able to improve word accuracies for
across-sessions testing by 18.5% (8.1% absolute) for individual
channels and by 14.3% (10.9% absolute) for all seven channels
by sharing training data across sessions and by applying meth-
ods based on Variance Normalization and Feature Space Adapta-
tion. This indicates, that conventional speech recognition methods
can be transferred to EMG based recognition systems and achieve
comparable word error rate reductions.

4.3. Audible vs Non-Audible Speech

To investigate the influence of speech manner (audible vs non-
audible) on the performance of EMG based speech recognition,
we recorded one audible and one non-audible session for each
speaker. These two “sessions” were in fact recorded as one ses-
sion with the exact same electrode placement, i.e. the electrodes
were not removed between the two parts. The only difference was
the speech manner. We now investigate the following aspects: (1)
do the EMG signals produced by audible speech differ from those
produced by non-audible speech and (2) is the recognition perfor-
mance of audible speech different from that of non-audible speech.
To investigate the first aspect we determined the recognition re-
sults across speech manners, i.e. models trained on audible speech
were applied to non-audible speech and vice versa. To examine
the second issue we compared the recognition results between the
two speech manners in a matching condition, i.e. the models were
trained and tested on the same speech manner. In a third experi-
ment, we shared the training data across speech manners from each
speaker to determine the performance of a recognizer that works
on both, non-audible and audible speech. In the latter case we
trained two systems; one with the same number of parameters as
our baseline system and one with twice as many parameters.

The results of our experiments are shown in Table 5 for all
channels and in Table 6 for individual channels respectively. It is
noticeable that speakers S1 and S3 have much better recognition
rates for audible speech than for non-audible speech. By contrast,
there is no significant difference in performance for speaker S2.
We believe that this relies to the fact that speaker S2 had the most
experience in speaking non-audibly. As alluded to above, we no-
ticed an improvement in performance with increasing experience
for all speakers. We deduce from this, that MES based recogni-
tion of non-audible speech can work just as well as MES based
recognition of audible speech (on our vocabulary) provided that
the speaker is accustomed to the speaking manner.

The relatively low results in the mismatched condition sug-
gest that muscle movements corresponding to audible speech dif-
fer from muscle movements corresponding to non-audible speech.
However, the results for the mixed systems indicate that a recog-
nizer can be trained for both, audible and non-audible speech, with
reasonable results. The comparison of the 12-Gaussian vs the 24-



Gaussian systems suggests to increase the numbers of parameters
for the mixed system.

Speech manner

[ ST [ S2 [ S3 [ Avg|

non-audible 97.0 | 99.8 | 93.5 | 96.8
audible 99.5 | 98.8 | 96.0 | 98.1
audible on non-audible || 72.8 | 84.5 | 64.3 | 73.8
non-audible on audible || 67.2 | 92.5 | 69.3 | 76.3
mixed; 12 Gaussians 96.1 | 98.1 | 91.8 | 95.3
mixed; 24 Gaussians 96.1 | 98.4 | 93.5 | 96.0

Table 5. Word Accuracies (in %) of non-audible and audible
speech using all seven channels.

| Speech Manner [ ST [ S2 ] S3 [ Avg |
non-audible 63.0 | 83.4 | 60.0 | 68.8
audible 739 | 847 | 70.3 | 77.5
audible on non-audible || 43.3 | 59.4 | 39.2 | 47.3
non-audible on audible || 39.0 | 60.9 | 32.7 | 44.2
mixed; 12 Gaussians 62.6 | 793 | 57.3 | 664
mixed; 24 Gaussians 64.7 | 81.1 | 59.7 | 68.5

Table 6. Word Accuracies (in %) for non-audible and audible
speech using one channel for recognition. Each entry represents
the average over all seven channels.

5. CONCLUSIONS AND FUTURE WORK

In this paper we introduced a speech recognition system based on
myoelectric signals. To cope with one of the main challenges of
surface electromyography based speech recognition, namely ses-
sion dependence, we investigated a variety of signal normaliza-
tion and model adaptation methods. Our results suggest that meth-
ods used in conventional speech recognition systems for channel
and speaker adaptation can be used for session adaptation in EMG
based speech recognizers. Sharing training data across sessions
and applying methods based on Variance Normalization and Maxi-
mum Likelihood adaptation improve across-sessions performance.
We achieved an average word accuracy of 97.3% for within-session
testing using seven EMG channels. Across-sessions testing with-
out any adaptation yielded an average of 76.2%. By applying
our normalization and adaptation methods we were able to bring
recognition rates back up to 87.1%. Comparative experiments in-
dicate that applying more than two electrodes is crucial, while us-
ing more than five electrodes does not lead to significant perfor-
mance improvements.

Furthermore, our experiments indicate significant differences
between the muscle movement corresponding to non-audible and
the muscle movement corresponding to audible speech. While
our recognizer performs slightly better on audible speech than on
non-audible data, it is possible to merge training data and im-
prove the robustness of the resulting recognizer. We also see large
performance differences across speakers, however, as EMG-based
speech recognition targets applications based on personal devices,
speaker independence is not crucial.

To demonstrate the potential of this technology we are cur-
rently implementing a prototype “silent” mobile phone. An EMG
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speech recognizer is trained on a set of sentences typically used
for answering a phone call during a meeting, for instance “I’m in
a meeting”, “is it urgent?” and “I’ll call back later”. This “silent”
mobile phone application enables the user to conduct confiden-
tial phone calls without disturbing others nearby. The presented
results are very promising but several limitations still need to be
overcome. Among the biggest challenges are the usage of robust
non-contact sensors to avoid clinging electrodes to the user’s face.
Another challenge is to move beyond discrete speech recognition
and approach continuously spoken large vocabulary tasks.
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