
An In-Depth Comparison of Keyword Specific Thresholding and
Sum-to-One Score Normalization

Yun Wang and Florian Metze

Language Technologies Institute, Carnegie Mellon University
Pittsburgh, PA, U.S.A.

yunwang@cs.cmu.edu, fmetze@cs.cmu.edu

Abstract
The quality of a spoken term detection (STD) system critically
depends on the choice of a “thresholding” function, which is
used to determine whether to output a candidate detection or
not based on its score. In the context of the IARPA Babel
program and the NIST OpenKWS evaluation series, the penalty
for missing an occurrence depends on the frequency of the
keyword, so it is desirable either to apply different thresholds to
different keywords, or to normalize the scores before applying a
global threshold. This paper compares two widely used thresh-
olding algorithms: keyword specific thresholding (KST) and
sum-to-one score normalization (STO), analyzes the difference
in their performance in detail, and recommends the use of the
“estimated KST” algorithm.
Index Terms: Spoken term detection, IARPA Babel, NIST
OpenKWS evaluation, keyword specific thresholding, score
normalization

1. Introduction
Spoken term detection is the task of detecting occurrences of
text queries (also called keywords) in an audio corpus. The
pipeline of a typical spoken term detection is shown in Fig. 1.
First, the audio data is processed with a speech recognizer.
Instead of outputting the single best hypothesis, the recognizer
produces multiple hypotheses in the form of lattices or confu-
sion networks [1], which we call the index. While the index
in our experiments consists of words, it may also consist of
morphemes or phones. Next, the index is searched for occur-
rences of keywords, and each detection is assigned a raw score
between 0 and 1 based on the posterior probabilities of words
in the index. These detections make up the raw detection list.
Finally, in the “thresholding” step, the score of each detection
is compared with a threshold. Detections with scores above the
threshold are retained and make up the final detection list, which
is the output of the system.

The performance of a spoken term detection is evaluated by
how many hits, misses and false alarms there are in the final
detection list. Several evaluation metrics exist that combine
these numbers in different ways, such as the F1 score, figure of
merit (FOM) [2], and actual term weighted value (ATWV) [3].
In this paper, we deal with the ATWV metric, which is the
primary evaluation metric in the IARPA Babel program and the
NIST Open Keyword Search (OpenKWS) evaluation series [3].

ATWV is defined as follows:

ATWV =
1

N

∑
w

[
Nhit(w)

Ntrue(w)
− β · NFA(w)

T −Ntrue(w)

]
(1)

where N is the total number of keywords (excluding those that

Figure 1: Pipeline of a spoken term detection system

never occur in the corpus), w stands for any keyword, Ntrue(w),
Nhit(w), and NFA(w) are the numbers of true occurrences, hits,
and false alarms of the keyword w, respectively. Two other
constants are involved in the formula: β is a factor that controls
the balance between misses and false alarms; in the OpenKWS
evaluation, it is set to 999.9. T is the total duration of the audio
corpus in seconds, which is around 36,000.

If we plug the two constants into Eq. (1), and consider
the fact that usually T ≫ Ntrue(w), we can get an intuitive
approximation of ATWV:

ATWV ≈ 1

N

∑
w

[
Nhit(w)

Ntrue(w)
− NFA(w)

36

]
(2)

We see that the penalty for a false alarm is almost constant
(1/36N), while the penalty for a miss depends on the number
of true occurrences, or frequency, of the keyword. Missing a
rare keyword is more costly than missing a frequent keyword.

The fact that the penalty for misses varies with the keyword
frequency motivates us to set the threshold separately for each
keyword: we should set lower thresholds for rare keywords to
avoid misses, and higher thresholds for frequent keywords to
avoid false alarms. Alternatively, we may normalize the raw
scores so that the detection scores of rare keywords get boosted,
and those of frequent keywords get suppressed.

Two representative thresholding algorithms have emerged
along the two lines of thinking: keyword specific thresholding
(KST) [4] and sum-to-one score normalization (STO) [5]. As
we have observed, there is some confusion among researchers
about the procedure and relative performance of the two algo-
rithms. The authors of [5], who proposed the STO algorithm,
claimed that “[KST] seems less intuitive and does not provide
any gain comparing with STO normalization.” On the other
hand, the authors of [6] found KST to perform slightly better
than STO. Within our own group, we have also got inconclusive
results with seemingly similar implementations of these algo-
rithms, including finding that STO performs significantly better
than KST.

This paper aims to clear up the confusion over the concepts
of KST and STO, and reveal the cause of the difference in their
performance. We recommend the use of “estimated KST” in the
OpenKWS evaluation.

2. The Algorithms
2.1. Keyword Specific Thresholding (KST)

From the analysis of the evaluation metric, ATWV, we have
seen that we need lower thresholds for rare keywords and higher
thresholds for frequent keywords. To derive the threshold quan-
titatively, we make the following probabilistic assumption:

The KST Assumption: The raw score of a de-
tection is the probability of it being correct.

This is reasonable because the raw scores are calculated from
the posterior probabilities of words in the lattices.

Suppose a detection has a raw score of p, and the corre-
sponding keyword has a frequency of Ntrue(w). Excluding this
detection incurs a risk of miss of 1

N
· 1
Ntrue(w)

· p; retaining this

detection incurs a risk of false alarm of 1
N
· β
T−Ntrue(w)

· (1−p).
We should retain the detection if the latter risk is smaller, and
exclude it vice versa. The optimal threshold should be the
value of p that makes the two risks equal, which is given by
the following formula:

thr(w) =
β ·Ntrue(w)

T + (β − 1) ·Ntrue(w)
(3)

Fig. 2 shows that the optimal threshold increases monotonically
with the keyword frequency Ntrue(w), using the constants β =
999.9 and T = 36,000.

The values of Ntrue(w) are actually unknown during spoken
term detection, and estimated values must be used. We call
Eq. (3) oracle KST if the oracle values of Ntrue(w) are used,
and estimated KST if estimated values are used instead.

Considering the KST assumption, a natural estimate of
Ntrue(w) will be the sum of the raw scores of all the detections
of the keyword w. This sum has been called the posterior sum,
and we’ll denote it by S(w). But how good is this estimate?

Fig. 3 shows the relationship between the estimate S(w)
and the true value Ntrue(w), with each keyword represented as
a dot. The values are calculated from a single system (“the
Assamese system”, which will be introduced in Section 3). The
left panel shows the whole picture, and the right panel is a
zoom-in of the part where both S(w) and Ntrue(w) are within
25. From the zoom-in we can see that, with the few outliers
excluded, for most keywords we have S(w) < Ntrue(w). This
bias is due to the fact that many occurrences of keywords are
not present in the index. To correct this bias, a boosting factor
α > 1 is multiplied to the posterior sum as the estimate for
Ntrue(w), i.e. N̂true(w) = αS(w). Substituting this into Eq. (3),
we get the formula for estimated KST:

thr(w) =
β · α · S(w)

T + (β − 1) · α · S(w)
(4)

The boosting factor α needs to be tuned on a validation corpus.
As will be seen in Section 3, α = 1.5 is a good choice.

2.2. Sum-to-One Score Normalization (STO)

Sum-to-One score normalization divides the raw score of each
detection by the posterior sum S(w) of the corresponding
keyword to yield the normalized score. The name “sum-to-
one” comes from the fact that for any keyword, the normalized
scores of all the detections sum to one. It achieves the goal of
boosting the detection score of rare keywords and suppressing
the detection scores of frequent keywords because S(w) is
smaller for rare keywords and larger for frequent keywords.

Figure 2: The relationship between the optimal threshold and
keyword frequency in KST

Figure 3: The relationship between the posterior sum and the
number of true occurrences

The authors of [5] did not state a method to set the global
threshold after score normalization. In practice, one can find
the optimal global threshold empirically on a validation corpus.
However, we can also borrow the assumption of KST and apply
it to STO, by regarding the normalized scores as probabilities of
the detections being correct. The posterior sum calculated from
the normalized scores will then be S(w) ≡ 1 for all keywords,
so Eq. (4) yields a global threshold for normalized scores:

thr =
β · α

T + (β − 1) · α (5)

2.3. The Connection Between KST and STO

Although KST and STO approach the need for keyword specific
thresholds from different angles, their outcomes turn out simi-
lar. To better compare the two algorithms, we convert the global
threshold for normalized scores given by STO in Eq. (5) back
to keyword specific thresholds for raw scores, remembering that
the raw score is the normalized score times S(w):

thr(w) =
β · α · S(w)

T + (β − 1) · α (6)

It is clear that the only difference between estimated KST
(Eq. (4)) and STO (Eq. (6)) is the presence or absence of the
factor S(w) in the denominator. But this factor can make a big
difference. As shown in Fig. 4 (with the constants β = 999.9,
T = 36,000 and α = 1.5), the estimated KST threshold is a
hyperbolic function of S(w), while the STO threshold is a linear
function of S(w). The latter can easily get larger than 1 when
S(w) is large, which causes the counter-intuitive phenomenon
that frequent keywords are never detected. For rare keywords,
estimated KST and STO exhibit similar behavior.

Figure 4: Comparison of the estimated KST and STO keyword
specific thresholds

3. Experiments and Analysis
3.1. Experimental Results

We compared the performance of oracle KST, estimated KST
and STO using 28 spoken term detection systems. The systems
came in 4 languages: Assamese, Bengali, Haitian Creole and
Zulu1; for each language, we had 7 systems trained with
different acoustic features (bottleneck features based on MFCC
and log mel scale filterbank coefficients [7]), acoustic models
(BNF-GMM trained with the bMMIE criterion and DNN-based
acoustic model [8]), and speaker adaptation methods (feature-
space constrained MLLR [9] and model-space MLLR [10]).
All systems used a confusion network based index generated
using the Janus toolkit with the Ibis decoder [11]. To study the
global trend, we look at the average ATWV across all the 28
systems; to study the details, we examine a single Assamese
system (which we refer to as “the Assamese system” hereafter).
The ATWV numbers look low because these are single sys-
tems trained on only 10 hours of audio, which is the primary
condition in this year’s evaluation. When multiple systems are
combined, they meet the performance goals of the IARPA Babel
program, and provide state-of-the-art performance. We have
also repeated the experiment on systems trained with 80 hours
of audio, and our findings still hold true.

First, we investigated the effect of the boosting factor α on
the ATWV in estimated KST and STO. Varying the boosting
factor α from 1.0 to 3.0 with a step of 0.1, we plot the change
of the ATWV of the Assamese system in Fig. 5(a). The curves
appear very ragged, and it is unreliable to read off the optimal
boosting factor from them. However, as shown in Fig. 5(b), the
change of the average ATWV across all the 28 systems is much
smoother. It happens that α = 1.5 is the optimal value for both
KST and STO, and with this boosting factor, estimated KST
performs slightly better than STO.

Next, fixing the boosting factor α at 1.5, we compared the
performance of all the three thresholding algorithms. Table 1
shows the ATWV of the Assamese system as well as the average
ATWV across 28 systems. It is quite surprising that oracle KST,
even though it has access to the real Ntrue(w) values, performs
a lot worse than estimated KST.

3.2. Significance Tests

The performance of estimated KST is only slightly better than
that of STO. This gives rise to a natural question: Is the
difference statistically significant?

1Babel OP1 language releases: IARPA-babel{102b-v0.5a,
103b-v0.4b, 201b-v0.2b, 206b-v0.1e}.

Figure 5: Comparison of the estimated KST and STO keyword
specific thresholds

Algorithm ATWV (single) ATWV (average)
Oracle KST 0.1044 0.1066

Estimated KST 0.1643 0.1593
STO 0.1617 0.1579

Table 1: Comparison of the ATWV of oracle KST, estimated KST
and STO

Figure 6: Histogram of ATWV difference between estimated
KST and STO on 28 systems

First, we compared the single-system performance of the
two algorithms with two significance tests: the paired t-test, and
the Wilcoxon signed-rank test [12]. In both tests, the “values”
(Nhit(w)
Ntrue(w)

− β · NFA(w)
T−Ntrue(w)

) of each keyword yielded by the two
systems are taken as a data pair. The paired t-test gave a p-
value of 0.0183 (significant), but the Wilcoxon signed-ranked
test gave a p-value of 0.7462 (insignificant). We choose to trust
the result of the more rigorous Wilcoxon signed-rank test. This
is because the paired t-test is based on the assumption that the
differences of the two values in each data pair are normally
distributed, which does not hold in reality.

Even though the difference between estimated KST and
STO is not significant for a single system, we may compare
the two algorithms on all the 28 systems. Now we regard the
ATWV achieved by the two algorithms on each system as a data
pair; a histogram of the ATWV differences on each system is
shown in Fig. 6. As the differences are approximately normally
distributed, it is safe to use the paired t-test. The test yielded
a p-value of 1.66 × 10−5. This means that estimated KST
outperforms STO significantly at the system level (instead of
the keyword level).

3.3. Why Estimated KST Is Better Than STO

Because the difference between estimated KST and STO on
a single system is not significant, we study the cause of the
difference by pooling the results of all the 28 systems. The
difference between the average ATWV of estimated KST and

Figure 7: Breakdown of the ATWV difference between estimated
KST and STO (average over 28 systems) by posterior sum

STO is 0.0014. We break this difference down by the posterior
sum of the keywords, as shown in Fig. 7(a). The i-th bin is
the total ATWV difference caused by keywords whose posterior
sums fall with [i−1, i). We observe a sharp positive peak in the
first bin, and a wide positive peak in the range 20 ≤ S(w) <
35. When the posterior sum gets larger than 55, most bins are
negative.

The second peak and the negative bins are meaningful; they
can be understood with the help of Fig. 4, which shows the
different keyword specific thresholds given by estimated KST
and STO. Except for very rare keywords, STO gives higher
thresholds than estimated KST, even larger than one. This has
the positive effect of ruling out false alarms, but also has the
negative effect of missing some true occurrences. Fig. 7(a)
indicates that STO gains ATWV by avoiding false alarms for
very frequent keywords (S(w) ≥ 55), but loses ATWV from
missing moderately frequent keywords (20 ≤ S(w) < 35).
In the OpenKWS evaluation, keywords are chosen in a way
such that most keywords do not occur frequently (this applies
to both the development keyword list, which we used in our
experiment, and the evaluation keyword list), so STO loses
more than it gains.

The peak in the first bin, despite having a high value, does
not have as much area as the second peak. It occurs purely
because many rare keywords fall in the bin S(w) < 1. If we
divide the values of the bins by the number of keywords that fall
in each bin, we can get the “per-keyword ATWV difference” for
each bin (Fig. 7(b)). Now the peak in the first bin disappears,
but the second peak and the negative bins remain.

3.4. Why Estimated KST Is Better Than Oracle KST

The difference between estimated KST and oracle KST is so
large and significant that it can be easily explained with a
single system. On the Assamese system, the ATWV difference
between estimated KST and oracle KST is 0.0599. This time,
we break down the difference by the number of true occurrences
Ntrue(w), as shown in Fig. 8(a). We see that more than half of
the total difference is caused by keywords whose Ntrue(w) = 1.
And this is not caused purely by a large number of keywords
falling in this bin; even if we divide the values of the bins by
the number of keywords falling in them (Fig. 8(b)), the first bin
still has a significant positive value. This means that oracle KST
loses to estimated KST mainly on the rare keywords.

The reason why oracle KST performs badly on rare key-
words is the quantization of Ntrue(w). Unlike S(w), which can
be arbitrarily small, Ntrue(w) can only take on values of positive
integers. According to Eq. (3), the minimum threshold possible
is β/(T + β − 1) ≈ 0.027. It turns out that this threshold is

Figure 8: Breakdown of the ATWV difference between estimated
KST and oracle KST (on the Assamese system only) by number
of true occurrences

still often too high, because the majority of the detections have
very small raw scores (ranging from 10−3 to 10−6); the true
detections are ruled out by the high threshold as well. Estimated
KST beats oracle KST because S(w) is a continuous estimate
of Ntrue(w). For rare keywords with low detection scores, S(w)
can be low commensurately. Even though this may produce
some false alarms, for rare keywords, it is much more valuable
to recall the true occurrences.

4. Conclusion
We have cleared up some confusion about keyword specific
thresholding (KST) by differentiating between oracle KST and
estimated KST. Oracle KST sets the thresholds based on the
number of true occurrences Ntrue(w) of keywords, which are
actually not available; estimated KST sets the thresholds based
on the posterior sum S(w) of keywords and a boosting factor
α. Estimated KST turns out to perform a lot better than oracle
KST, because the former is able to set very low thresholds for
rare keywords and recall their true occurrences.

We have also compared estimated KST with sum-to-one
score normalization (STO). We have found that estimated KST
performs slightly better than STO, which agrees with the dis-
covery in [6]. The difference is insignificant on a single system,
but significant when many systems are considered. The reason
why estimated KST outperforms STO is that the thresholds set
by STO for moderately frequent keywords are too high.

In practice, we recommend the use of estimated KST, be-
cause it has the best performance as well as a solid probabilistic
foundation, and avoids the counter-intuitive phenomenon of
never detecting any frequent keywords. For the OpenKWS
evaluation, α = 1.5 is a good value for the boosting factor,
but one should tune it on a validation corpus to achieve the best
performance.

5. Acknowledgements
This work was supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Department of Defense
U.S. Army Research Laboratory (DoD/ARL) contract number
W911NF-12-C-0015. The U.S. Government is authorized to
reproduce and distribute reprints for Governmental purpose
notwithstanding any copyright annotation thereon.

Disclaimer: The views and conclusions annotated herein
are those of the authors and should not be interpreted as
necessarily representing the official policies or endorsements,
either expressed or implied, of IARPA, DoD/ARL, or the U.S.
Government.

6. References
[1] L. Mangu, E. Brill and A. Stolcke, “Finding consensus

among words: lattice-based word error minimization”, in
Proc. of Eurospeech, pp. 495-498, 1999.

[2] J. R. Rohlicek, W. Russell, S. Roukos and H. Gish, “Con-
tinuous hidden Markov modeling for speaker-independent
word spotting”, in Proc. of ICASSP, pp. 627-630, 1989.

[3] NIST, “OpenKWS14 Evaluation Plan”, 2014. Online:
http://www.nist.gov/itl/iad/mig/upload/
KWS14-evalplan-v14.pdf

[4] D. R. H. Miller, et al., “Rapid and accurate spoken term
detection”, in Proc. of InterSpeech, pp. 314-317, 2007.

[5] J. Mamou, et al., “System combination and score normal-
ization for spoken term detection”, in Proc. of ICASSP,
pp. 8272-8276, 2013.

[6] D. Karakos, et al., “Score normalization and system
combination for improved keyword spotting”, in Proc. of
ASRU, pp. 210-215, 2013.

[7] J. Gehring, Y. Miao, F. Metze and A. Waibel, “Extracting
deep bottleneck features using stacked auto-encoders”, in
Proc. of ICASSP, pp. 3377-3381, 2013.

[8] J. Gehring, Q. B. Nguyen, F. Metze and A. Waibel, “DNN
acoustic modeling with modular multi-lingual feature ex-
traction networks”, in Proc. of ASRU, pp. 344-349, 2013.

[9] M. J. F. Gales, “Maximum likelihood linear transfor-
mations for HMM-based speech recognition”, Technical
report, Cambridge University, 1997.

[10] C. J. Leggetter and P. C. Woodland, “Speaker adaptation
of continuous density HMMs using multivariate linear
regression”, in Proc. of ICSLP, pp. 451-454, 1994.

[11] H. Soltau, F. Metze, C. Fügen and A. Waibel, “A one-
pass decoder based on polymorphic linguistic context
assignment”, in Proc. of ASRU, pp. 214-217, 2001.

[12] F. Wilcoxon, “Individual comparisons by ranking
methods”, in Biometrics Bulletin, vol. 1, no. 6, pp. 80-83,
1945.

