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Abstract 
Multilingual deep neural networks (DNNs) can act as deep 
feature extractors and have been applied successfully to cross-
language acoustic modeling. Learning these feature extractors 
becomes an expensive task, because of the enlarged multi-
lingual training data and the sequential nature of stochastic 
gradient descent (SGD). This paper investigates strategies to 
accelerate the learning process over multiple GPU cards. We 
propose the DistModel and DistLang frameworks which 
distribute feature extractor learning by models and languages 
respectively. The time-synchronous DistModel has the nice 
property of tolerating infrequent model averaging. With 3 
GPUs, DistModel achieves 2.6× speed-up and causes no loss 
on word error rates. When using DistLang, we observe better 
acceleration but worse recognition performance. Further eva-
luations are conducted to scale DistModel to more languages 
and GPU cards.  
Index Terms: Deep neural networks, distributed learning, 
automatic speech recognition 

1. Introduction 
DNNs are evolving into the state of the art for acoustic 
modeling on large vocabulary continuous speech recognition 
(LVCSR) [1, 2, 3] tasks. In DNN-HMM hybrid systems, 
neural networks with multiple hidden layers are trained to 
estimate the posterior probabilities of HMM context-
dependent states. Likelihoods of speech frames are derived 
from these posteriors and state priors to replace Gaussian 
mixture model (GMM) likelihoods [1]. Compared with GMMs, 
DNN acoustic models tend to have more parameters and 
higher complexity. With adequate training data, DNNs have 
shown superior performance than GMMs [1, 2, 3]. However, 
when transcribed speech becomes highly limited (e.g., only 
several hours), the large parameter space of DNNs may lead to 
degradation on unseen testing data. Thus, we are likely to 
observe drastically different recognition performance between 
rich-resource and low-resource languages [4, 5].  

Speech recognition on a low-resource target language can 
be enhanced by taking advantage of external rich-resource 
languages. For example, [6, 7] realize cross-language 
knowledge transfer either through pre-training the target-
language DNN with the source languages, or through 
initializing its parameters with a network fine-tuned on 
another language. An alternative proposal is motivated by the 
feature learning formulation about DNNs [8]: hidden layers 
are treated as a series of nonlinear transformations that convert 
the original input features to high-level representations; a 
softmax layer is finally added to perform classification with 
respect to HMM states. Following this idea, multilingual 
DNNs are trained collaboratively over the source languages, 
with their hidden layers shared across languages [9]. On the 
target language, these shared layers are taken as a feature 
extractor which is intrinsically language-independent. 

Previous work [9, 5] has reported the effectiveness of 
aforementioned feature extractors in addressing low-resource 
acoustic modeling. Training such feature extractors relies on 
the sequential SGD algorithm. When multiple rich-resource 
source languages (e.g., English and Mandarin) are available, 
feature extractor learning can be prohibitive even with GPU-
based implementations. In this paper, we focus on accelerating 
the learning process. Our goal is to scale feature extractor 
learning to large datasets and diverse languages. We propose 
two distribution schemes to parallelize the learning task over 
multiple GPUs. In the first scheme DistModel, each GPU 
trains an instance of the feature extractor over a portion of the 
whole training data. The parallel model instances are averaged 
periodically after a predefined number of mini-batches. The 
second scheme DistLang distributes learning by languages. 
Separate feature extractors are trained on individual languages 
without any communication between GPUs. On the target 
language, outputs from these language-specific extractors are 
fused into the final feature representation.  

Parallelized training of DNN acoustic models has been 
investigated thoroughly under monolingual settings [10, 11, 12, 
13]. In [14], the authors parallelize multilingual DNN training 
over CPUs based on the DistBelief framework [15, 16]. We 
concentrate on multi-GPU training, and are particularly 
interested to analyze how parallelism affects the quality of the 
learned feature extractors. Both DistModel and DistLang are 
evaluated on the multilingual BABEL corpus. The perfor-
mance of feature extractors is measured by WERs on the 
target language. A salient observation from the experiments is 
that DistModel can tolerate fairly infrequent model averaging, 
e.g., 2000 mini-batches between two consecutive averaging 
operations. As a result, the synchronizing delay is alleviated 
greatly, despite the fact that DistModel is time-synchronous. 
With DistModel deployed over 3 GPUs, feature extractor 
learning becomes 2.6× faster than using a single GPU, while 
giving the identical WER as single-thread training. In 
comparison with DistModel, DistLang achieves better speed-
up but worse WER. Larger-scale evaluations further reveal the 
scalability of DistModel to more languages and GPUs.  

2. DNN Feature Extractors 
Figure 1(a) depicts the learning of DNN-based feature 
extractors over a group of source languages [4, 5]. The hidden 
layers of the multilingual DNNs are shared across all the 
languages. Each language has its own output layer to classify 
context-dependent states. Fine-tuning of the DNNs is carried 
out using the standard mini-batch based SGD. The difference 
is that each epoch traverses data from all the source languages, 
instead of one single language. The SGD estimator loops over 
languages iteratively, each time picking one mini-batch from a 
language. Also, it switches to the softmax layers and class 
labels corresponding to the language from which the current 
mini-batch comes. Parameters of the shared layers are updated 
with gradients accumulated from all the languages.  



 
Figure 1. (a) Learning of feature extractors over source 
languages; (b) applying this extractor to the target language 
for cross-language hybrid system building. 
 

When the multilingual DNNs are trained, the shared 
hidden layers serve as a language-universal feature extractor 
[9].  On the target language, as shown in Figure 1 (b), a hybrid 
system is built using features generated from this extractor, 
instead of the raw acoustic features (e.g., MFCCs). The DNN 
in this hybrid system is trained to estimate posterior 
probabilities of the target-language HMM states. This cross-
language acoustic modeling approach enables knowledge 
transfer across languages and thus improves the recognition 
performance on the target language, especially when the target 
language has limited transcribed speech [5]. This differs from 
[9] in that on the target language, we are building a fully-
connected DNN model, while [9] re-estimates a single softmax 
layer over the extracted features.  

3. Distributed Feature Extractor Learning 
Ideally, feature extractors introduced in Section 2 are trained 
over rich-resource languages with adequate data. However, 
training based on SGD is sequential and hard to be parallelized. 
This makes feature extractor learning an expensive task, even 
with the powerful GPU cards. We aim at distributing 
computation over multiple GPUs, and two parallelization 
schemes are presented to accomplish this. 

3.1. DistModel: Distribution by Models 
Model averaging [10, 17, 18] has been exploited on distributed 
learning problems, for both convex and non-convex models. 
We port this idea to distributed training of multilingual DNN 
feature extractors on GPUs. The implementation is 
straightforward. Training data of each language is partitioned 
evenly across all the GPU threads. Suppose that sources 
include 3 languages each of which contains 100 hours of 
training data. When distributing training to 4 GPUs, we assign 
to each GPU 75 hours of data, i.e., 25 hours from each source 
language. Different GPUs have no overlapping on their data. 
Then, each GPU trains the feature extractor as described in 
Section 2. After a specified number of mini-batches, feature 
extractor instances from the individual GPUs are averaged into 
a unified model. We refer to the number of mini-batches 
between two consecutive averaging operations as averaging 
interval. Note that both the language independent (shared 
hidden layers) and the language specific (softmax layer) 

parameters are averaged. The averaged parameters are sent 
back to each GPU as the new starting model for the 
subsequent training.  

DistModel is inherently time synchronous in that the 
parallel threads have to wait for each other to perform model 
averaging. This tends to cause delay, especially when the 
frequency of model averaging is high or some computing 
nodes run slowly. Compared with the more popular 
asynchronous methods [11, 13, 14, 15, 16, 18, 19], time 
synchronous methods generally achieve worse acceleration. 
However, we discover that on this particular feature learning 
task, DistModel is robust to large averaging interval up to 
2000 mini-batches. This is partly because multitask learning 
performed by each GPU prevents local optima on the 
multilingual DNN models. The averaged feature extractor still 
provides unbiased feature representations, even after SGD has 
processed many mini-batches of training examples on each 
GPU. Because of this, delay resulting from model averaging 
ends up to be a tiny fraction of the entire training time. We are 
confident to think that DistModel has comparable efficiency 
with asynchronous implementations. This is also demonstrated 
in Section 5 by comparing DistModel with previously reported 
results [12, 13].  

3.2. DistLang: Distribution by Languages 
Another way for distributed learning is to train the feature 
extractors independently on individual source languages. Each 
GPU uses the complete data from one language and trains the 
normal DNN model. Figure 2 depicts the idea of DistLang by 
showing N source languages which translate to N separate 
feature extractors after DNN training. On the target language, 
each speech frame is fed into these extractors. The N separate 
feature representations are fused to form the input into the 
target-language hybrid DNN. We apply two methods for this 
feature fusion.  

Assume that the feature dimension emitted from each 
extractor is D. Our first method FeatConcat borrows the idea 
of MLP feature merging proposed in [20, 21, 22]. We 
concatenate outputs from the language-specific feature 
extractors into a single vector which has the dimension of 
N×D. In the second method FeatMix, we fuse the feature 
representations via a linear weighted combination. More 
formally, given the target-language input feature ot, the feature 
representation from the n-th feature extractor is denoted as 
fn(ot ).  The   combined  feature  vector  can  be   computed  as 
 

 
Figure 2. DistLang for distributed feature extractor learning. 
Top: each GPU trains a feature extractor on each language. 
Bottom: on the target language, outputs from individual 
extractors are fused into a unified feature representation. 
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where the D-dimensional vector an contains the mixture 
weights for the n-th extractor, b is a D-dimensional bias vector, 
and ⊗  represents element-wise product. We do not define the 
values of an  and b in advance. Instead, they can be learned 
during training of the target-language DNN through back-
propagation (BP). If each hidden layer of the target-language 
DNN has M units, then the sizes of the input layer weight 
matrix are NDM and (N+1+M)D for FeatConcat and FeatMix 
respectively. Therefore, this FeatMix method helps to shrink 
the parameter space of the target-language DNN model. We 
expect FeatMix to be particularly advantageous when we have 
many source languages (i.e., a large N) and the target language 
has highly limited training data.  

A notable difference between DistModel and DistLang is 
that the parallel GPU jobs in DistLang are completely 
independent without any mutual communication. DistLang 
incurs no delay cost from thread synchronization. Also, when 
a new source language becomes available, we only need to 
train the language-specific feature extractor on this new 
language. However, in order for inclusion of a new source 
language, DistModel has to retrain the entire feature extractor 
from scratch. One caveat of DistLang lies in the limitation that 
the number of GPUs is hardcoded by the number of source 
languages. In comparison, DistModel is more flexible and can 
make use of an arbitrary number of GPUs.   

4. Experiments 

4.1. Experimental Setup 
Our experiments are conducted on the multilingual BABEL 
corpus collected under the BABEL research program. The 
corpus has covered a wide range of languages including 
Tagalog, Pashto, Bengali, etc. The full language pack (FullLP) 
of each language contains around 80 hours of telephone 
conversational speech for training and 10 hours for decoding. 
On each language, there is also a low-resource 10HrLP 
condition under which only 10 hours of transcribed speech are 
allowed to be used for system building. We take the 10HrLP 
condition of Tagalog (IARPA-babel106-v0.2f) as the target 
language. The source languages include the FullLP sets of 
Cantonese (IARPA-babel101-v0.4c), Turkish (IARPA-
babel105b-v0.4) and Pashto (IARPA-babel104b-v0.4aY). We 
measure the quality of multilingual DNN feature extractors 
based on WERs of hybrid systems on the target language. For 
fast turnarounds, we select 2 hours of speech from the 10-hour 
decoding data as the testing set. Decoding runs use a trigram 
language model built from the 10-hour training transcripts.   

On each language, we build the GMM-HMM system with 
the same recipe. An initial maximum likelihood model is first 
trained using PLP+delta+acceleration features with mean 
normalization. Then 9 frames of PLPs are spliced together and 
projected down to 40 dimensions by linear discriminant 
analysis (LDA). A maximum likelihood linear transform 
(MLLT) is applied on the  LDA  features  and  generates  the  
LDA+MLLT  model. Finally, to deal with speaker variability, 
speaker adaptive training (SAT) is performed using feature-
space maximum likelihood linear regression (fMLLR) [23]. 
On each language, class labels for speech frames are generated 
by its SAT GMM-HMM through forced alignment.  

4.2. Results of Baseline Feature Extractors 
Both monolingual and multilingual DNN training follows the 
similar configuration as [5]. DNN inputs are 11 consecutive 
frames of 30-dimensional log-scale filterbanks with per-
speaker mean and variance normalization. Fine-tuning starts 
from an initial learning rate (e.g., 0.08) which keeps 
unchanged for 15 epochs. Then the learning rate is halved at 
each epoch until the frame accuracy on a held-out validation 
set stops to improve. A momentum of 0.5 is used for fast 
convergence and the mini-batch size is 256. It’s worth 
pointing out that we are experimenting with a highly low-
resource target condition. Also, the data collection covers a 
variety of environments, speaking styles and dialects. All these 
factors render speech recognition on Tagalog 10HrLP a very 
challenging task [5, 24, 25]. Purely with 10HrLP, the 
monolingual DNN hybrid system has the WER of 65.8% on 
the 2-hour testing set. With the baseline feature extractor 
trained on a single GPU, we are able to reduce the WER down 
to 59.6%. That is, cross-language acoustic modeling described 
in Section 2 brings 9.4% relative improvement. This feature 
extractor has hidden layers with 1024 units and thus generates 
1024-dimensional high-level feature representations.  

4.3. Results of DistModel 
Now that we have 3 source languages, 3 GPUs are employed 
for fair comparison between DistModel and DistLang. On the 
target language, we use the identical DNN topology, i.e., 4 
hidden layers each with 1024 units, for hybrid system building 
over various feature extractors. A key variable in the 
DistModel scheme is the averaging interval (Section 3.1). 
Figure 3(a) shows the target-language WERs when DistModel 
adopts various averaging interval values. In Figure 3(b), 
acceleration coming from parallelization is quantified by the 
speed-up, that is, the ratio of the training time taken using a 
single GPU to the time using 3 GPUs. As expected, with larger 
averaging  interval, we obtain  monotonically  better  speed-up 
because of less model averagings. The change of WER 
displays  more  fluctuation,  especially for   averaging  interval  

 

 
 

 

 

 

 
 

Figure 3. Impact of averaging interval on (a) recognition 
performance and (b) training speed-up. WER(%) is reported 
on the Tagalog 2-hour testing set. “Epoch” means that 
averaging happens when each epoch ends.  
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below 2000. When averaging interval equals 2000, feature 
extractor learning with 3 GPUs is 2.6× faster than using a 
single GPU, with the WER of 59.7% on the target language. 
This corresponds to 0.1% absolute degradation which can be 
considered negligible given the baseline 59.6%. Continuing to 
increase averaging interval gives further speed-up but signifi-
cantly worse WERs. Thus, setting averaging interval to 2000 
seems to be a good balance between training efficiency and 
recognition performance. A contrast experiment is to train the 
feature extractor with a single GPU and only one third of the 
data. In this case, we can get perfectly 3× speed-up. However, 
the WER on the target language goes up to 62.2%.  

To investigate DistModel more closely, we apply 
DistModel to the Tagalog FullLP set for the normal 
monolingual DNN training. The resulting DNN model is used 
directly for hybrid system decoding, rather than for feature 
extraction. Table 1 shows that in this scenario, DistModel 
achieves similar speed-up as for multilingual DNN training. 
However, WER degradation caused by parallelization 
becomes more obvious compared with Figure 3. This 
demonstrates that DistModel is particularly suitable for 
multilingual feature extractor learning.   

4.4. Results of DistLang 
When switching to DistLang, we train the DNN feature 
extractor on each of the 3 source languages. Since these 
monolingual extractors are trained independently, this 
approach has approximately 3× speed-up. These extractors 
can adopt the same hidden layer structure as the multilingual 
extractors. In this case, feature representations from 
FeatConcat have the dimension of 1024×3, while FeatMix 
still generates 1024-dimensional features. An alternative 
setting is to insert a bottleneck-like layer, which has 341 units, 
in each monolingual extractor. Then, feature dimensionality of 
FeatConcat remains consistent with the multilingual extractors. 
Table 2 compares FeatConcat and FeatMix in terms of WER 
on the target language. Both FeatConcat and FeatMix perform 
worse than DistModel. Under the two dimension settings, the 
FeatConcat method outperforms FeatMix, even though the 
improvement is minor. We think the reason is that the linear 
combination in FeatMix limits the power of the transform 
applied to input features. As discussed in Section 3.2, we 
expect more gains to be achieved by FeatMix when the target 
language has even less training data (e.g., only 1 hour).  

5. Larger-Scale Evaluations 
In this section, we extend DistModel to larger-scale 
evaluations by adding Tagalog (IARPA-babel106-v0.2f) and 
Vietnamese (IARPA-babel101-v0.4c) into the source  
 

Table 1. Performance of DistModel on Tagalog FullLP DNN 
training. We increase averaging interval from 300 to 3000.  
Parallelization uses 3 GPUs, and WER(%) is reported on the 
Tagalog 2-hour testing set.   
 

Method WER(%) Training speed-up
 

Single GPU (baseline) 49.3 --- 
 

DistModel – 300 50.1 1.5 
DistModel – 600 50.5 1.9 
DistModel – 1000 50.5 2.2 
DistModel – 2000 50.3 2.5 
DistModel – 3000 50.8 2.7 

Table 2. Comparison of FeatConcat and FeatMix within 
DistLang. WER(%) is reported on the 2-hour testing set.  
 

Method Feature dimension WER(%)
 

DistLang - FeatConcat 1024 61.4 
DistLang – FeatMix 1024 61.6 

 

DistLang - FeatConcat 341 60.3 
DistLang – FeatMix 341 60.7 

 
languages. This finally gives us 460 hours of speech data for 
feature extractor training. Our target language now is the 
10HrLP condition of Bengali (IARPA-babel103b-v0.4b). Also, 
2 hours of speech from the Bengali decoding data are selected 
as the testing set. DistModel adopts the optimal configuration 
found in Section 4.3. Table 3 shows how DistModel performs 
when we scale it up to 5 GPUs. We observe consistent 
acceleration, although the speed-up fails to improve linearly 
with the number of GPUs. Meanwhile, pooling more GPUs 
into distributed learning causes WER degradation, which is 
likely to be mitigated by further optimization (e.g., learning 
rate, feature dimension) on DistModel.   
 
Table 3. Performance of DistModel with 5 source languages. 
Distributed training uses 3, 4 and 5 GPUs respectively. 
WER(%) is reported on the Bengali 2-hour testing set.  
 

Method WER(%) Training speed-up
 

Monolingual DNN 72.5 --- 
Single GPU (baseline) 65.7 --- 

 

DistModel with 3 GPUs 66.2 2.4 
DistModel with 4 GPUs 66.7 3.1 
DistModel with 5 GPUs 66.8 3.4 
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7. Conclusions and Future Work 
In this paper, we present two effective schemes, DistModel 
and DistLang, to train multilingual DNN feature extractors in 
a distributed manner. These two strategies distribute 
computation by models and languages respectively. In our 
experiments with the BABEL corpus, DistModel is robust to 
infrequent model averaging and shows nice training speed-up. 
In comparison, the DistLang scheme is characterized by better 
acceleration but worse WER on the target language. In our 
future work, we will further examine FeatConcat and FeatMix 
by adding more languages as the sources and reducing the 
target-language training data. Also, we are interested to extend 
DistModel to deep convolutional networks (DCNs) [26, 27, 
28], and study the efficient training of multilingual feature 
extractors with convolution layers.  
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