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Abstract 
When deployed in automated speech recognition (ASR), deep 
neural networks (DNNs) can be treated as a complex feature 
extractor plus a simple linear classifier. Previous work has 
investigated the utility of multilingual DNNs acting as 
language-universal feature extractors (LUFEs). In this paper, 
we explore different strategies to further improve LUFEs. First, 
we replace the standard sigmoid nonlinearity with the recently 
proposed maxout units. The resulting maxout LUFEs have the 
nice property of generating sparse feature representations. 
Second, the convolutional neural network (CNN) architecture 
is applied to obtain more invariant feature space. We evaluate 
the performance of LUFEs on a cross-language ASR task. 
Each of the proposed techniques results in word error rate 
reduction compared with the existing DNN-based LUFEs. 
Combining the two methods together brings additional 
improvement on the target language.  
Index Terms: language-universal feature extraction, deep 
maxout networks, deep convolutional networks 

1. Introduction 
On large vocabulary continuous speech recognition (LVCSR), 
deep neural networks (DNNs) have shown significant gains 
over the traditional Gaussian mixture model/hidden Markov 
model (GMM/HMM) systems [1, 2]. With multiple hidden 
layers, a DNN acoustic model is trained to estimate the 
posterior probabilities of HMM context-dependent states. The 
hidden layers of DNNs can be treated as a series of nonlinear 
transformations that convert the original input features to high-
level representations. The final softmax layer is added to 
classify speech frames into HMM states. It is revealed in [3] 
that the effectiveness of DNNs comes largely from the 
invariance of the representations to variability such as 
speakers, environments and channels.  

Following this feature learning formulation, [4] trains 
DNNs over multiple languages, with the hidden layers shared 
across languages. These shared layers are taken as a language-
universal feature extractor (LUFE) [4]. Given a new language, 
acoustic models can be built over the outputs from the LUFE, 
instead of the raw features (e.g., MFCCs). Porting LUFEs to a 
new language provides an elegant way for cross-language 
knowledge transfer. This approach has shown nice 
improvement in the literature [4, 5], especially when the new 
language has limited transcribed speech (e.g., only several 
hours). The goal of this paper is to investigate various 
strategies to improve LUFE-based feature extraction and thus 
boost the ASR performance on the new language.  

First, sparsity is introduced into the learned deep feature 
representations. Sparse feature learning [6, 7, 8] is an active 
research topic in the machine learning area. On the complex 
image and speech signals, sparse features (e.g., sparse coding 
[9]) tend to give better classification accuracy compared with 

non-sparse feature types [9, 10, 11, 12]. We implement sparse 
LUFEs by taking advantage of the deep maxout networks 
(DMNs) [13, 5, 14, 15]. In the DMN, units at each hidden 
layer are divided into groups, and each group generates a 
single output with max-pooling. When the DMN is applied, 
the DMN-LUFE feature extractor can generate representations 
with truly-zero sparsity (many of the features become zeros). 
Second, we propose to train LUFEs based on the convo-
lutional neural network (CNN) architecture. The advantage of 
CNNs has been confirmed experimentally, with CNNs 
outperforming the state-of-the-art DNNs on both phone 
recognition [16] and LVCSR [17, 18, 19] tasks. Due to the 
local filters and max-pooling layers, CNNs are able to reduce 
spectral variation in the speech data. Therefore, more robust 
and invariant representations are expected to be obtained from 
the CNN-LUFE feature extractor. 

Our experiments are on the BABEL multilingual corpus 
[5, 20, 21] where we establish a cross-language acoustic 
modeling task. LUFEs are trained over a group of source 
languages and evaluated by WERs on the target language. We 
compute the population sparsity [8] metric to quantitatively 
measure the sparsity level of various LUFEs. In comparison 
with the DNN-based LUFE, the DMN feature extractor 
corresponds to sparser features and better recognition results. 
Extensive experiments are conducted to determine CNN confi-
gurations (number of convolution layers, learning rate, etc) 
suitable for feature extraction. We observe that for the CNN-
LUFE, optimal features are hidden outputs from the fully-
connected layer which follows the convolution stages. Finally, 
our proposed techniques are combined together to give further 
gains on the target language. With the resulting CNN-DMN-
LUFE, we are able to obtain a 3.7% absolute WER reduction 
with the DNN-based LUFE as the baseline.  

2. Feature Extraction with DNNs 
 

A multilingual DNN feature extractor can be learned over a 
group of languages as depicted in Figure 1(a). The hidden 
layers of the multilingual DNNs are tied across all the 
languages, while each language has its own softmax output 
layer to classify context-dependent states specific to that 
language. Fine-tuning of the DNNs can be carried out using 
stochastic gradient descent (SGD) based on mini-batches. 
Each epoch traverses data from all the languages instead of 
one single language. When picking up one mini-batch, the 
SGD estimator switches to the corresponding softmax layer. 
Parameters of the shared layers are updated with gradients 
gathered from all the source languages. 

When the multilingual DNNs are trained, a consecutive 
subset of the shared layers act as the LUFE. On the target 
language, as shown in Figure 1 (b), a hybrid system is built 
using the features generated from this extractor. The DNN in 
this hybrid system is trained to estimate posterior probabilities 
of  the  target  language  senones. This cross-language acoustic 



 
Figure 1. (a) Learning a language-universal feature extractor 
(LUFE) over 3 languages; (b) applying this extractor to a 
target language for cross-language hybrid system building. 
 

modeling improves speech recognition on the target language, 
especially when the target language has highly limited 
transcribed speech [5, 22].   

Our approach described above differs from the method 
proposed by [4] on two aspects. First, the extractor used in [4] 
consists of all the shared layers, while we only take a subset of 
the layers as the extractor. The intuition is that the higher 
layers (e.g., the last hidden layer) are closer to the language-
specific softmax layers, which may introduce undesirable 
language bias to their activations. Second, on the target 
language, we are building a DNN model, instead of a single 
softmax layer, over the extracted features. In our experiments, 
these two modifications have resulted in notable improvement 
over the method in [4]. 

3. LUFEs with Convolutional Networks 
Instead of using fully-connected parameter matrices, CNNs 
are characterized by parameter sharing and local feature 
filtering. The local filters help to capture locality along the 
frequency bands. On top of the convolution layer, a max-
pooling layer is usually added to normalize spectral variations. 
As a result, the CNN hidden activations become invariant to 
different types of speech variability and provide better feature 
representations.  

Figure 2 shows our CNN architecture which works 
slightly different from the existing proposals [16, 17, 18]. In 
the convolution layer, we only consider filters along frequency, 
assuming that the time variability can be modeled by HMM. 
Inputs into CNNs are N neighbouring frames of acoustic 
features (e.g., log filterbanks), where each frame vi is a 1D 
feature map. The hidden outputs from this layer contain J 
vectors ([h1, h2, h3 …]). The trainable 1D filter rji connects 
input feature map vi and output feature map hj, and is shared 
across the frequency axis along vi. Outputs from this 
convolution layer can be computed as 
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where * represents the 1D discrete convolution operator, and 
bj is the trainable bias attached to hj. In this paper, we use the 
logistic sigmoid activation function σ . 

 
Figure 2. One stage of CNNs consisting of the convolution and 
pooling layers. We are also showing the details regarding 1D 
max-pooling from hj to pj when the pooling size is 2. 
 

Then, a max-pooling layer is added on top of the 
convolution layer. Max-pooling is carried out in a vector-wise 
mode. More formally, for each vector hj, we divide its units 
into non-overlapping groups and output the maximum 
activation within each group. When the pooling size is k, the 
size of each after-pooling feature map pj is 1/k of the size of 
the before-pooling hj. The convolution and pooling layers 
together are called a convolution stage. In our setups, CNNs 
stack two such stages where outputs from the lower pooling 
layer are propagated to the higher convolution layer. Multiple 
fully-connected DNN layers and finally the softmax layer are 
added over these two stages. From the feature learning 
perspective, the convolution and pooling layers in this 
structure are trained to extract invariant features, while the 
fully-connected layers use these high-level features to better 
classify HMM states. 

4. Sparse Feature Extraction 
Our past study [5] presents the deep maxout networks (DMNs) 
for speech recognition. An example of a maxout layer is 
shown in Figure 3(a) where the group size (the number of 
units in each group) is 3. The units at each hidden layer are 
partitioned into groups, and we impose max-pooling on each 
group. Compared with standard DNNs, DMNs perform better 
on both hybrid systems and bottleneck-feature (BNF) tandem 
systems [5]. In this paper, we focus on the application of 
DMNs as sparse feature extractors. Sparse representations can 
be generated from any of the maxout layers   via    a   non-
maximum  masking  operation, as  exemplified  by  Figure 3(b). 
Specifically, given one input frame, all the units within each 
group have their individual outputs, instead of being pooled 
together into one output. However, only the maximum value in 
this group is retained, while the other outputs are rounded to 0. 
It’s  worth  noting  that  non-maximum masking only  happens 
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during the feature extraction stage. The training stage always 
applies max-pooling. We extend our previous idea from the 
following three aspects.  

First, we compute population sparsity [8] for each feature 
type as a quantitative indicator. If the m-th frame has the 
feature vector fm, then population sparsity 

pSparsity = 1
2|| |||| ||m

m

f
f                              (2) 

measures how sparse the features are on this example. We 
report the value of this metric as an average over the entire 
target-language training set. Unless otherwise stated, 
population sparsity is shortened as pSparsity throughout this 
paper. A lower pSparsity means higher sparsity of the features.  
 

Second, to better understand the impact of sparsity, we 
compare DMNs against the rectifier networks [23]. DNNs 
consisting of rectifier units, referred to as deep rectifier 
networks (DRNs), have shown competitive accuracy on 
speech recognition [24, 25, 26]. The rectifier units have the 
activation function max(0, x). As a result, high-sparsity 
features can be naturally produced from a DRN-based 
extractor, because many of the hidden outputs are forced to 0. 
 

Third, DMNs are combined with CNNs to obtain both 
sparse and invariant feature representations. The CNN-DMN-
LUFE extractor is structured in the similar way as CNN-LUFE 
(Section 3). The only difference is that the fully-connected 
layers in CNNs are replaced by maxout layers. In Section 5.5, 
we will experimentally prove that this combined feature 
extractor ends up to be the best LUFE in this work.   

5. Experiments 

5.1. Experimental Setup 
On the BABEL corpus, we evaluate feature extractors in the 
context of cross-language hybrid system building. Our 
experiments follow the setup in [5], using languages from the 
IARPA BABEL research program. We aim at improving 
speech recognition on the Tagalog (TG, IARPA-babel106-
v0.2f) limited language pack (LimitedLP). This is a low-
resource condition because only 10 hours of telephone 
conversation speech are available for system building. 
Moreover, the data collection covers a variety of acoustic 
conditions, speaking styles and dialects. A large portion of the 
audio data are either non-speech events (e.g., breath, laugh, 
cough) or non-lexical speech (e.g., hesitations and fragments). 
All these factors make speech recognition under this condition 
a very difficult task. Therefore, we get higher WERs [5, 20, 21] 
than on other benchmark datasets such as Switchboard.  

On the target language Tagalog LimitedLP, WERs are 
reported on a 2-hour testing set. The training and testing sets 
have no over-lapping speakers. During decoding, we use a 
trigram language model built from training transcriptions. The 
source languages, on which feature extractors are trained, 
include the LimitedLP sets of Cantonese (CN, IARPA- 
babel101-v0.4c),  Turkish  (TU, IARPA-babel105b-v0.4)  and 
Pashto (PS, IARPA-babel104b-v0.4aY). LimitedLP sets of the 
four languages have statistics summarized in Table 1.  

On each language, we build the GMM/HMM system with 
the same recipe. An initial maximum likelihood model is first 
trained using 39-dimensional PLPs (plus deltas and double 
deltas) with per-speaker mean normalization. Then 9 frames 
are  spliced  together  and  projected  down  to  40  dimensions  

Table 1. Statistics of the datasets used in the experiments. The 
last row shows the number of classes on each language. 
 

Statistics Target Source 
TG CN TU PS 

 

#training speakers 132 120 121 121
training (hours) 10.7 17.8 9.8 9.8 
dictionary size 8k 7k 12k 8k 

 

# of classes 1920 1867 1854 1985
 

with linear discriminant analysis (LDA). A maximum 
likelihood linear transform (MLLT) is applied on the LDA 
features and generates the LDA+MLLT model. Speaker 
adaptive training (SAT) is performed using feature-space 
maximum likelihood linear regression (fMLLR). The number 
of triphone states for each language is shown in Table 1.  

5.2. Monolingual DNNs and CNNs 
We experiment with DNN and CNN acoustic models on the 
Tagalog LimitedLP training set, without applying any LUFEs. 
Inputs of DNNs and CNNs include 11 consecutive frames of 
30-dimensional log-scale filterbanks with per-speaker mean 
and variance normalization. During network fine-tuning, we 
start from a learning rate of 0.08 which keeps unchanged for 
15 epochs. Then the learning rate is halved at each epoch until 
the cross-validation accuracy on a held-out set stops to 
improve. A momentum of 0.5 is used for fast convergence and 
the mini-batch size is 256.  

The DNN model has 6 hidden layers and 1024 units at 
each layer. DNN parameters are initialized with stacked 
denoising autoencoders (SDAs) [27] using masking noise and 
the denoising factor of 0.2. Each layer in the DNN 
corresponds to a denoising autoencoder (DA) which 
minimizes the difference between the reconstruction of 
corrupted input and the clean version of it. Pre-training of each 
layer has the learning rate of 0.01 and runs for 10 epochs. 
Previous work [20, 21] has applied SDAs on LVCSR and 
shown that SDAs perform comparably as restricted Boltzmann 
machines (RBMs) [28] for DNN pre-training.  

For CNNs, the size of the filter vectors rji  is constantly 
set to 5. We use a pooling size of 2, meaning that the pooling 
layer shrinks convolution outputs by half. After tuning the 
CNN architecture, we observe that the best setting has two 
convolution stages and three fully-connected layers. The first 
and second convolution layers contain 100 and 200 feature 
maps respectively. Continuing to augment the convolution and 
fully-connected layers brings no further gains. Table 2 shows 
that the CNN achieves 2.6% absolute WER improvement 
(68.2% vs. 70.8%) over the DNN model, which demonstrates 
the advantage of CNNs for acoustic modeling. In this paper, 
no  pre-training  is  performed  for  CNNs.  We    leave  SDAs 
 

Table 2. WERs(%) of DNN and CNN models on the target 
language. The last three rows are cross-language DNN 
models based on LUFEs. “Feature Dim” means the dimension 
of the features from each LUFE.  
 

Models Feature Dim WER% 
 

Monolingual DNN   --- 70.8 
Monolingual CNN --- 68.2 

 

DNN-LUFE 1024 69.6 
CNN-LUFE - FeatType 1 1000 67.8 
CNN-LUFE - FeatType 2 1024 67.1 



initialization of CNN parameters to our future work.  

5.3. Results of DNN- and CNN-LUFEs 
LUFEs are trained over the three source languages. When 
using DNNs, we share their hidden layers across the languages. 
After DNNs are trained, the lower four layers are employed as 
the feature extractor, which gives better results than generating 
features from the last hidden layer [4]. Multilingual training of 
CNNs also exploits the parameter sharing idea. The 
convolution and fully-connected layers are shared over the 
source languages. Then we can take the two convolution 
stages as the LUFE, and features are generated from the 
second max-pooling layer. Alternatively, we can also extract 
features from the lowest fully-connected layer which is on top 
of the convolution stages. These two manners of CNN feature 
extraction are called FeatType1 and FeatType2.  

 

On Tagalog LimitedLP, DNN-based hybrid systems are 
built on these extracted feature representations. Table 2 (the 
last three rows) shows the results of the hybrid systems when 
various LUFEs are applied. For fair comparison, the identical 
DNN topology, i.e., 4 hidden layers each with 1024 units, is 
used for hybrid systems over different feature extractors. We 
can see that cross-language models based on LUFEs give 
consistently better results than the monolingual DNN. The 
FeatType2 CNN extractor outperforms the DNN extractor by 
2.5% absolute WER (67.1% vs 69.6%). FeatType1 performs 
worse than FeatType2 partly because the layout of convolution 
outputs differs a lot from the DNN activations. This 
incompatibility may hurt the performance if we build DNN 
hybrid systems directly on top of convolution outputs. 

5.4. Results of Sparse LUFEs 
As with [5, 24], the dropout technique [29] is applied in both 
DMN and DRN raining, in order to prevent overfitting and 
improve model robustness. We impose dropout on each hidden 
layer by following the implementation described in [22]. The 
drop factor, which governs the binomial distribution for 
hidden activation masking, is constantly set to 0.2. Learning of 
multilingual DRNs and DMNs has the similar configuration as 
multilingual DNNs (Section 5.3). Due to the introduction of 
dropout, we use a larger learning rate for both DRNs and 
DMNs, by increasing the starting learning rate to 0.1. For 
DMNs, we keep the number of units at each hidden layer 
approximately to be 1024, and vary the combination of group 
number and group size.   

 

Table 3 compares DRNs and DMNs based LUFEs in 
terms of pSparsity and target-language WERs. DRNs generate 
sparser features with lower pSparsity values. However, 
features   produced   by   DMNs   achieve  better  WERs   than 
features from DRNs. Increasing the group size (from 2 to 3 
and finally 4) in DMNs gives sparser features but degrades the  
 
Table 3. WERs(%) and pSparsity of DRNs and DMNs feature 
extractors. “DMN-LUFE, m×n” means that each layer of the 
DMN extractor has m unit groups each of which has n units. 
 

LUFE Models WER% pSparsity 
 

DRN-LUFE  68.2 10.7 
 

DMN-LUFE, 512×2 67.5 17.7 
DMN-LUFE, 342×3 67.8 14.6 
DMN-LUFE, 256×4 67.9 12.8 

recognition results. This reveals that although sparsity is a 
desirable property, over-sparsification may hurt speech 
recognition performance. The best sparse features in Table 3 
are generated by DMNs with 512 unit groups and the group 
size of 2 at each hidden layer.  

5.5. Combining CNNs and DMNs 
Finally, we examine the effectiveness of combining CNNs and 
DMNs for better feature extraction. The structure of the 
convolution layers as defined in Section 5.2 remains the same. 
We replace the sigmoid fully-connected layers with maxout 
layers. During multilingual training, the convolution layers 
and maxout layers use the starting learning rates of 0.08 and 
0.1 respectively. Features are generated from the lowest 
maxout layer on top of the convolution stages (i.e., FeatType2 
defined in Table 2). We can see from Table 4 that compared 
with the CNN-LUFE, the CNN-DMN-LUFE generates sparse 
features as well as target-language WER reduction. This 
combined extractor is the best LUFE presented in this paper. It 
obtains 3.7% absolute WER improvement (65.9% vs 69.6%) 
over the baseline DNN-based LUFE.  
 

Table 4. Comparison of CNN-LUFE and CNN-DMN-LUFE in 
terms of pSparsity and target-language WERs(%). 
 

LUFE Models WER% pSparsity 
 

CNN-LUFE           FeatType2 67.1 20.4 
CNN-DMN-LUFE FeatType2 65.9 16.6
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7. Conclusions and Future Work 
This paper has investigated the effectiveness of deep maxout 
and convolutional networks in performing language-universal 
feature extraction. Following experiments on the BABEL 
corpus, we are able to draw the following principal 
conclusions: 1) in comparison with DNNs, CNNs generate 
better feature representations and more WER improvement on 
cross-language hybrid systems; 2) maxout networks have the 
property of generating sparse hidden outputs, which makes the 
learned representations more interpretable and explanatory; 3) 
CNN-DMN-LUFE, a hybrid of CNNs and maxout networks, 
results in the best recognition performance on the target 
language. For our future work, we are interested to examine 
the effects of pre-training on CNNs as feature extractors. Also, 
we would like to extend various LUFE models to more 
languages and study how the LUFE approach performs under 
larger datasets.  
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