
Towards Speaker Adaptive Training of Deep Neural Network Acoustic Models 

Yajie Miao, Hao Zhang, Florian Metze 

 Language Technologies Institute, School of Computer Science, Carnegie Mellon University 
Pittsburgh, PA, USA 

{ymiao,haoz1,fmetze}@cs.cmu.edu 
 

Abstract 
We investigate the concept of speaker adaptive training (SAT) 
in the context of deep neural network (DNN) acoustic models. 
Previous studies have shown success of performing speaker 
adaptation for DNNs in speech recognition. In this paper, we 
apply SAT to DNNs by learning two types of feature mapping 
neural networks. Given an initial DNN model, these networks 
take speaker i-vectors as additional information and project 
DNN inputs into a speaker-normalized space. The final SAT 
model is obtained by updating the canonical DNN in the 
normalized feature space. Experiments on a Switchboard 110-
hour setup show that compared with the baseline DNN, the 
SAT-DNN model brings 7.5% and 6.0% relative improvement 
when DNN inputs are speaker-independent and speaker-
adapted features respectively. Further evaluations on the more 
challenging BABEL datasets reveal significant word error rate 
reduction achieved by SAT-DNN.   
Index Terms: Deep neural networks, speaker adaptive 
training, automatic speech recognition 

1. Introduction 
In recent years, DNNs have been used widely for automatic 
speech recognition (ASR), showing superior performance than 
the state-of-the-art GMM-HMM systems [1, 2, 3]. GMM 
models take advantage of speaker adaptation to reduce 
mismatch between training and testing conditions. Speaker 
adaptation applies affine transforms, such as maximum 
likelihood linear regression (MLLR) [4], either to GMM 
model parameters or to speech features. However, this idea of 
linear transformation is not applicable for DNN adaptation in 
the sense that input features of DNNs normally have very high 
dimensions. Also, DNNs are trained discriminatively with the 
back-propagation (BP) algorithm rather than maximum 
likelihood estimation (MLE). How to effectively adapt DNN 
acoustic models therefore becomes an active research area.  

The first group of methods perform adaptation by 
augmenting the speaker-independent DNN (SI-DNN) with an 
additional layer. The parameters of such a layer are learned via 
BP on the adaptation data. This layer can be inserted between 
the input layer and features [3, 5], acting as the new input 
layer.  Alternatively, it can be placed immediately after the last 
hidden layer, which is equivalent to modifying the parameters 
of the softmax classification layer [5, 6]. Given insufficient 
adaptation data, [6] only updates the bias vector of the softmax 
layer for robust adaptation. Competitors of these approaches 
are [7, 8] in which no changes are made to the DNN structure. 
Instead, the shape of the activation function is adjusted to fit 
SI-DNN to the testing condition. Meanwhile, various efforts 
have been made to train DNNs on speaker-adapted features. 
For example, [3, 9] evaluate the effectiveness of applying 
GMM-derived vocal tract length normalization (VTLN) and 
feature-space MLLR (fMLLR) [4] transforms to DNN inputs. 
Speaker-adapted features can also be obtained by explicitly 

incorporating speaker information into DNN training. In [10], 
the authors use i-vectors [11, 12, 13] as low-dimensional 
representations of speaker characteristics, and concatenate i-
vectors with raw acoustic frames such as MFCCs.  

Another key technique to boost GMMs is speaker adaptive 
training (SAT) [14]. This paper ports the concept of SAT to 
DNN acoustic models. Following the similar steps adopted by 
SAT-GMM, SAT-DNN starts from an initial DNN1 which has 
been trained over all the speakers. A feature mapping function, 
analogous to fMLLR transforms in GMM, is learned to 
incorporate i-vectors as extra information and project the 
original features into a speaker-normalized space. Finally, the 
canonical DNN model is re-finetuned in the new feature space 
with the feature mapping applied.  

We represent this feature mapping function as a complex 
neural network and propose two implementations for it. The 
first method AdaptNN inserts multiple adaptation layers above 
the input layer of the initial DNN. This idea is related to [15] 
with one important difference: we append i-vectors, instead of 
the trained speaker codes [15, 16], to adaptation layer outputs. 
Benefits of using i-vectors will be discussed in Section 3. The 
second method involves training a smaller network which 
takes i-vectors as input and produces a linear feature shift at 
the output. This shift is added to the original DNN inputs and 
the resulting feature space becomes more speaker-normalized.  

In the training stage, the two types of feature mappings, as 
well as the canonical model, can be learned with the standard 
BP. During decoding, the SAT-DNN model is adapted simply 
by extracting the i-vector for each testing speaker and feed the 
i-vector to the architecture. Speaker adaptation in this manner 
is efficient because no initial decoding pass is required. In 
contrast, the existing DNN adaptation methods rely on first-
pass decoding hypotheses to get the supervision targets. Since 
DNNs are not re-finetuned on the adaptation data, this 
approach is less sensitive to hypotheses errors and thus more 
suitable for unsupervised adaptation. Experiments with the 
Switchboard dataset show that the proposed SAT-DNN 
achieves significant improvement over the baseline initial 
DNN, regardless of whether the baseline model has been 
trained on speaker-independent or speaker-adapted features. 
Moreover, we demonstrate the advantage of SAT-DNN on the 
more challenging BABEL corpus.  

2. Extraction of I-Vectors 
The introduction of i-vectors has resulted in state-of-the-art 
results in speaker recognition and verification [11, 12, 13]. 
The i-vector approach differs from the earlier joint factor 
analysis (JFA) [17] in that it has a single variability subspace, 
rather than separate speaker and channel subspaces. A speaker 
independent GMM model, also referred to as universal 

                                                                  
 
1  This initial DNN can be either SI-DNN or a DNN trained over 
speaker-adapted features such as fMLLR.  



background model (UBM), can be trained on the speech 
segments from a group of speakers S. Then, we adapt the 
UBM to a specific speaker s and concatenate means of the 
speaker-dependent GMM into a supervector which is further 
decomposed as 

s s= +v m Ti                                        (1) 

where m is the supervector of the UBM means, and T is the 
total variability matrix subsuming principal components of 
variability in the supervector space. Training of the T matrix is 
entirely unsupervised, following the similar procedures used to 
train the speaker subspace in JFA [17]. The low-dimensional i-
vector is contains factors on each principal component. We 
assume a standard normal distribution N(0, 1) over i-vectors. 
Then, is can be obtained by maximum a posterior (MAP) 
estimation given the speech segments from speaker s.  
Previously, i-vectors have been applied successfully for 
discriminative adaptation of GMM models [18] and speaker 
adaptation of DNNs [10]. In this paper, we exploit i-vectors to 
realize SAT of DNNs.   

3. Speaker Adaptive Training of DNNs 
SAT starts from an initial DNN model built for hybrid systems. 
This DNN is trained to classify the input acoustic features into 
context-dependent HMM states. DNN outputs are the estimate 
of posterior probabilities of the states given each feature vector. 
This section first presents two methods for transforming input 
features and then elaborates on SAT procedures. 

3.1. AdaptNN: Bottom Adaptation Layers 
The first method AdaptNN, as shown on the right of Figure 1, 
inserts multiple fully-connected adaptation layers under the 
initial DNN but above the input features. Given an input 
feature vector ot from speaker s, each adaptation layer, except 
the highest one, appends the corresponding i-vector is to its 
hidden activation. The combined outputs are propagated to the 
next layer as inputs. Suppose that Wm is the weight matrix 
connecting the m-1-th and m-th adaptation layer. Then, the 
size of Wm is Nm×(Nm-1 + d), with Nm  denoting the number 
of units at the m-th adaptation layer and d denoting the 
dimension of i-vectors.  

The intuition behind AdaptNN is that by incorporating i-
vectors, the adaptation layers convert the original DNN inputs 
into more speaker-independent features. Parameters of the 
AdaptNN network, marked with green circles in Figure 1, can 
be estimated with BP on the training data by keeping the initial 
DNN fixed. The highest adaptation layer generates the new 
features and must have the same dimension as the original 
feature vectors. Also, this highest layer uses the linear 
activation function, while the other adaptation layers use the 
sigmoid function.  

Although having the similar architecture as [15], AdaptNN 
differs on two aspects. First, in [15], representations of speaker 
characteristics, also called speaker codes, have to be learned 
on both training and testing sets. In contrast, i-vectors can be 
extracted in a completely unsupervised way. Therefore, 
AdaptNN requires no finetuning over the adaptation data. 
Second, speaker codes are appended both to the adaptation 
layers and also to the original features [15]. However, we 
observe optimal recognition performance when AdaptNN 
appends i-vectors only to the adaptation layers.  

 
Figure 1: Illustration of the iVecNN and AdaptNN methods for 
input feature mapping. The green circles mark the connection 
parameters for the feature mapping networks. 
 

3.2. iVecNN: Linear Feature Shift 
For GMM models, linear feature shift has been exploited 
extensively for speaker adaptation and feature-space 
discriminative training (such as fMPE [19]). A bias vector is 
estimated and added to the original features, making the 
resulting feature space either speaker independent or 
discriminative. Previous work [18] has also attempted to learn 
feature shift from i-vectors in order for GMM adaptation. The 
idea can be formulated as follows: 

( )t t sf= +a o i                                 (2) 

where ot is the original feature vector from speaker s, and f is 
the function which maps the i-vector to a bias vector. After 
adding this bias, we can get a speaker independent feature 
vector at. In [18], the mapping function f is formulated into 
region dependent linear transforms (RDLT) [20].  

For DNN acoustic models, we use an i-vector neural 
network as f. Our method is depicted on the left of Figure 1. 
The i-vector network iVecNN takes i-vectors as input and 
generates the feature shift as output. Its output layer has the 
same dimension as ot and uses the linear activation function. 
The other layers in iVecNN adopt the sigmoid activation 
function. This smaller iVecNN network is combined with the 
initial DNN via feature addition to form an even deeper 
network. We keep the parameters of the initial DNN 
unchanged. Parameters of iVecNN are updated through BP 
from the top softmax layer of the initial DNN. Note that inputs 
to this combined DNN include i-vectors together with the 
speech features. Thus, the number of training examples equals 
the number of training speech frames, not the number of i-
vectors (i.e., training speakers). A notable advantage of 
iVecNN lies in its applicability to convolutional neural 
network (CNN) acoustic models [21, 22, 23]. In comparison, 
appending i-vectors to convolution layers is difficult because 
convolution outputs are generally organized in the form of 
feature maps. As a result, the AdaptNN method is not 
applicable to CNNs.  

3.3. Speaker Adaptive Training 
After the feature mappings are learned, speaker adaptive 
training is straightforward to accomplish. We apply the feature 
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mapping, either AdaptNN or iVecNN, to input features. The 
upper initial DNN is further updated in the transformed feature 
space, while parameters of AdaptNN or iVecNN are kept fixed. 
This generates the canonical DNN model more independent of 
specific speakers. The procedures for building SAT-DNN can 
be summarized as follows. 
 

1) Train the baseline initial DNN over the training data 
 

2) Extract i-vectors for training speakers 
 

3) Learn the feature mapping using i-vectors and based on 
the AdaptNN or iVecNN method 

 

4) Update the canonical DNN model in the transformed 
feature space 

 

During decoding, we extract i-vectors for testing speakers and 
feed the i-vectors to the architecture in Figure 1. This will 
adapt SAT-DNN to each testing speaker, without any 
finetuning on the adaptation data. Therefore, unlike SAT-
GMM, SAT-DNN only needs to decode the testing data once, 
even if unsupervised adaptation is performed.  

4. Experiments on Switchboard 

4.1. Experimental Setup 
The first set of experiments are on the Switchboard 
conversational telephone speech. For faster turnaround of 
tuning experiments, we select 100k utterances from the entire 
Switchboard-1 Phase 2 pack and create a smaller training set 
with 110 hours of speech, as described in [9, 24]. Evaluation is 
conducted on the eval2000 (Hub5’00) testing set. This testing 
set consists of 20 conversations from Switchboard and 20 
conversations from CallHome English. We report results on 
the Hub5’00-SWB part. All decoding runs use a trigram 
language model trained solely from the Switchboard-1 
transcripts. During DNN training, a 5-hour validation set, 
independent of the 110-hour training set, is employed for 
parameter tuning. 

The GMM-HMM systems are built with the standard 
Kaldi Switchboard recipe [25]. We first train the initial ML 
model based on 39-dimensional MFCC+delta+acceleration 
features with per-speaker cepstral mean normalization. Then 9 
frames of MFCCs are spliced together and projected down to 
40 dimensions with linear discriminant analysis (LDA). A 
maximum likelihood linear transform (MLLT) is applied on 
the LDA features and generates the LDA+MLLT model. 
Finally, to deal with speaker variability, SAT is performed 
based on fMLLR. The SAT model has 4287 context-
dependent triphone states and an average of 20 Gaussian 
components per state. 

We turn to the open-source ALIZE toolkit [26] for i-vector 
extraction. The i-vector extractor uses 19-dimensional MFCCs 
and log-energy as the features, with the frame length of 25 ms 
and shift of 10 ms. Computing deltas and accelerations finally 
gives a 60-dimensional feature vector on each frame. Both the 
UBM model and the total variability matrix are trained on the 
entire 318 hours of Switchboard-1 speech. A 100-dimensional 
i-vector is generated for each training and testing speaker. One 
may argue that we are making use of extra data beyond the 
defined 110 hours. However, training of i-vector extractors is 
unsupervised and uses no transcripts. In practice, large 
amounts of untranscribed speech are easily accessible. Thus, 
we think that system comparison in our experiments remains 
fair and valid.   

4.2. Baseline DNN Systems 
On the 110-hour training set, we construct two DNN models 
on top of different feature types. The inputs of the first DNN 
are 11 neighboring frames of 30-dimensional log-scale 
filterbank coefficients with per-speaker cepstral mean and 
variance normalization. The second DNN is trained over 9 
neighboring fMLLR frames. In both cases, the class labels for 
speech frames are generated by the SAT-GMM model through 
forced alignment. DNNs have 5 hidden layers, each of which 
contains 1024 units. Finetuning of the networks is to optimize 
the cross-entropy objective with an exponentially decaying 
learning rate schedule. Specifically, the learning rate starts 
from an initial value and remains unchanged for 15 epochs. 
Then the learning rate is halved at each epoch until the frame 
accuracy on the validation set stops to improve. A momentum 
of 0.5 is adopted for fast convergence, and we use the mini-
batch size of 256 for stochastic gradient descent (SGD).  
 

It’s worth pointing out that DNN parameters are initialized 
randomly to rule out impact of pre-training on system 
comparison. We achieve the best WER of 19.9% on Hub5’00-
SWB, while the authors of [9] report 19.7% under the similar 
setting. This 0.2% gap may come from differences in language 
model pruning, number of targets, scoring configuration, etc. 
After doing pre-training with Stacked Denoising Autoencoders 
(SDAs) [27], we are able to bring the WER down to 19.3%, a 
slightly better number than [9]. This means that if only 
acoustic modeling is concerned, we are working with a 
reasonable baseline. A more competitive baseline is the 
approach proposed in [10]. However, we experiment with this 
approach on our setups and fail to get gains out of it. We will 
continue to work on replicating the numbers reported by [10].  

4.3. Results of SAT-DNN  
When SAT-DNN is deployed, AdaptNN and iVecNN have the 
following configurations: their output layers have the same 
dimension as the original features (330 for filterbanks and 360 
for fMLLR); each of the other layers has 512 units. Figure 2 
shows SAT-DNN results as we vary the number of layers in 
AdaptNN and iVecNN. In general, DNNs with speaker-
adapted fMLLR features get better performance than DNNs 
with speaker-unadapted filterbank features. For each feature 
type, the SAT-DNN model consistently outperforms the 
baseline DNN (see Table 1), even when the baseline is trained 
on fMLLR features. On both feature types, SAT-DNN 
achieves its optimal WER when AdaptNN has 3 layers 
(including the output layer). When switching to iVecNN, 
SAT-DNN performs best if iVecNN has 4 layers. 

     
 
  

Figure 2: Performance of SAT-DNN as the number of layers in 
AdaptNN and iVecNN increases. WER(%) is measured on the 
HUB’00-SWB set.



Table 1 presents results corresponding to the best 
configuration from Figure 2. The AdaptNN method performs 
better than iVecNN in terms of WER of the final SAT-DNN. 
We think this is because the linear shift from iVecNN is not 
powerful enough to transform the original features 
sophisticatedly. With the filterbank features, SAT-DNN with 
AdpatNN achieves the WER of 19.8%, i.e., 7.5% relative 
improvement over the baseline model. When fMLLR features 
are used, the improvement of SAT-DNN becomes less 
significant (6.0% relative), simply because speaker variability 
has been partly modeled by fMLLR transforms.  
 

The last two rows in Table 1 show the results when we 
don’t update the canonical DNN model after estimating the 
feature mappings. In this case, we get better WER than the 
baseline, demonstrating the benefits of AdaptNN and iVecNN 
for feature normalization. However, the numbers are worse 
than the complete SAT-DNN model. Another natural question 
is: how does SAT-DNN perform without adding the i-vectors? 
We build SAT-DNN following the same steps (Section 3.3) 
but without appending i-vectors to the AdaptNN network. On 
the filterbank (fMLLR) features, SAT-DNN gives the WER of 
20.9% (19.7%). This is marginally better than the baseline 
DNN but significantly worse than SAT-DNN with i-vectors. 

5. Experiments on BABEL 
We further evaluate SAT-DNN on the BABEL corpus that has 
been collected under the IARPA BABEL research program. 
The corpus consists of a variety of languages including 
Cantonese, Tagalog, Turkish, etc. Each language contains 
around 80 hours of conversational telephone speech for 
training and 10 hours for system development. The data 
collection covers a variety of acoustic conditions, speaking 
styles and dialects. Also, a  large portion of the audio data are 
either  non-speech events  (e.g., breath, laugh, cough) or  non- 
lexical speech (e.g., hesitations, fragments and foreign words). 
Due to all these factors, speech recognition on the BABEL 
corpus is a very difficult task [28, 29, 30].  

In this paper, we conduct our experiments on Tagalog 
(IARPA-babel106-v0.2f) and Turkish (IARPA-babel105b-
v0.4). We follow the similar setups as on Switchboard to build 
the GMM and DNN models. The SAT models of the two 
languages have 3890 and 3880 triphone tied states respectively. 
On each language, the i-vector extractor is trained only on its 
training data, without utilizing any external speech. During 
decoding, we select approximately 2 hours of speech from the 
entire 10-hour development data as the testing set. The trigram 
language model is built from training transcripts.  
 
 

Table 1. WER(%) of various DNN models on HUB’00-SWB. 
Results are reported with filterbank and fMLLR features 
respectively. Numbers in brackets are relative improvement 
over the baseline, which holds for Table 2 and 3.  
 

Models Filterbank fMLLR 
 

Initial DNN (Baseline) 21.4 19.9 
 

SAT-DNN (AdaptNN) 19.8 (7.5%) 18.7 (6.0%) 
SAT-DNN (iVecNN) 19.9 (7.0%) 19.0 (4.8%) 

 

AdaptNN + Initial DNN 20.8 (2.8%) 19.2 (3.5%) 
iVecNN + Initial DNN 21.2 (0.9%) 19.7 (1.0%) 

We observe that on BABEL data, the fMLLR front-end 
does not hold a clear advantage over the filterbank features. 
Therefore, we only present the results of SAT-DNN with 
filterbanks in Table 3. On both Tagalog and Turkish, the SAT-
DNN model displays better recognition performance 
compared with the corresponding baseline DNN. For example, 
on Tagalog, SAT-DNN with AdaptNN achieves 2.2% absolute 
(or 4.5% relative) improvement in terms of WER. On Turkish, 
the improvement is enlarged to 2.7% absolute or equivalently 
5.3% relative.  
 

Table 3. WER(%) of SAT-DNN on the BABEL Tagalog and 
Turkish datasets. The features are  filterbanks.  

Models Tagalog Turkish 
 

Initial DNN (Baseline) 49.3 51.3 
 

SAT-DNN (AdaptNN) 47.1 (4.5%) 48.6 (5.3%)
SAT-DNN (iVecNN) 47.3 (4.1%) 49.3 (3.9%)

 

6. Conclusions and Future Work 
In this paper, we present an effective framework to perform 
SAT for DNN acoustic models. Two types of neural networks, 
AdaptNN and iVecNN, are proposed in order for feature 
transformation. These networks take speaker i-vectors as 
additional information and are trained to map speech features 
into a speaker-normalized space. The canonical DNN is 
further updated in the new feature space to generate the final 
SAT-DNN model. Experiments show that SAT-DNN achieves 
nice gains when the initial DNN has been trained over both 
speaker-independent and speaker-adapted features.  

The SAT-DNN model is likely to be more advantageous 
with improved i-vector exaction. In our future work, we will 
explore training of the i-vector extractor on more external data 
[18]. Also, as discussed in Section 3.2, the iVecNN method is 
applicable to CNNs. We will extend SAT to CNN acoustic 
models [21, 22, 23] and examine the effectiveness of the 
resulting SAT-CNN model.  
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