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Abstract
This paper presents a Gaussian free approach to constructing
the cluster tree (CT) that context dependent acoustic models
(CD-AM) depend on. In resent years deep neural networks
(DNN) have supplanted Gaussian mixture models (GMM) as
the default method for acoustic modeling (AM). DNN AMs
have also been successfully used to flat start context indepen-
dent (CI) AMs and generate alignments on which CTs can be
trained. Those approaches however still required Gaussians to
build their CTs. Our proposed Gaussian free CT algorithm
eliminates this requirements and allows, for the first time, the
flat start training of state of the art DNN AMs without the use
of Gaussian. An evaluation on the IWSLT transcription task
demonstrates the effectiveness of this approach.
Index Terms: speech recognition, cluster tree, deep neural net-
works, flat start, context dependent acoustic models

1. Introduction
Due to advances in deep neural networks (DNN), Hidden
Markov Models that use DNNs to estimate their state emission
probabilities have now become the dominent form of acous-
tic models in large vocabulary continuous speech recognition
(LVCSR) [1]. Automatic speech recognition systems using
HMM/DNN AMs have been shown to outperform HMMs that
use Gaussiam Mixture Models (GMMs) for estimating their
emission probabilities. Word error rates (WERs) are usually
reduced by up to 30% relative [2, 3, 4]. The acoustic model
of an ASR systems estimates the conditional probability that a
certain word sequence W = w1, ..., wn has produced a cer-
tain sequence of observed feature vectors F = f1, ..., fT , i.e.
P (F |W ). Let st denote the state that an HMM is in at time
t, and let Xt denote the feature vector being emitted at time t.
Then, for every state i of an an HMM λ, one needs to calculate
the emission probability of that state emitting the feature vector
ft at time t under the assumption that one already is in state i,
i.e. P (Xt = ft|st = i, λ).

The choice of states in an HMM depends on which units of
speech one wants to model. Most commly used are phonemes
which are subdivided into, e.g., three, sub-states. In order to
be able to build an HMM for an arbitrary word sequence, re-
gardless of whether that word sequence was seen in the training
data or not, HMM parameters, such as emission probabilities
and transition probabilities, are shared across all states that be-
long to the same (sub-)phoneme. This kind of acoustic model
is called a context-independent (CI) model and its modelling
assumption is clearly wrong as phonemes will be pronounced
differently depending on the phonetic context in which they are

spoken. This lead to the use of polyphones, instead of phonemes
as modeling units. A polyphone is defined as a phoneme in a
certain phonetic context. Depending on how long the phonetic
context is that one considers, we, e.g., speak of tri-phones (one
phoneme to the left and right of the phoneme modelled is con-
sidered) or quinphones (two phonemes to the left and right are
considered).

Given the currently available amounts of acoustic model
training data, the number of possible tri-phone or quin-phone
models is generally too large as to be able to robustly estimate
their emission probability on the given training data. Also, the
not uncommon case that a polyphone has not been seen in the
training data at all requires a back-off mechanismen. Therefore,
polyphones are normally clustered into groups of similarily pro-
nunced polyphones, called generalized polyphones. These clus-
ter then share a common set of HMM parameters (as in the CI
case for phonemes), leading to context-dependent (CD) AMs.
Often the clustering is being performed with the help of clas-
sification and regression trees that ask general properties of the
phonetic context of a phoneme. As the questions can be applied
to any sequence of phonemes, regardless of whether this se-
quence has been seen in training or not, these cluster trees also
solve the problem of back-off for unseen polyphones, as they
will always assign a generalized polyphone to any phoneme
given its phonetic context [5].

The use of context dependent AMs is not only of advantage
for HMM/GMM models, but also important for HMM/DNN
models [6]. The clustering procedure for the CD AMs requires
a distant measure for clusters of polyhphones. One common
distance measure is for example the weighted entropy distance
calculated on the mixture weights of a semi-continuous HMM
trained on the unclustered polyphones. As this procedure re-
quires GMMs for obtaining the mixture weights on which the
entropy distance is calculated, a normal training procedure for
HMM/DNN models is to first train an HMM/GMM model, per-
form the clustering of generalized polyphones and only then to
train the actual DNN for use in the recognition system.

Another prerequisite to DNN training is the alignment of
feature vectors to states, usually done with the Viterbi algo-
rithm. This is necessary due to the fact that training data is nor-
mally only aligned at an utterance level. Despite the superiority
of HMM/DNN AMs most ASR system still seem to rely on
HMM/GMM AMs to generate this alignment [1]. Senior et. al.
[7] show that this does not have to be the case and demonstrate
how to flat-start an HMM/DNN AM using a randomly initial-
ized context independent HMM/DNN AM to generate an ini-
tial alignment. However, after successfully bootstrapping a CI
HMM/DNN AM they “accumulate sufficient statistics to model



each context dependent state with a diagonal covariance Gaus-
sian” in order to build the cluster tree. While their setup avoids
the use of any HMM/GMM AMs they still train Gaussians dur-
ing clustering making their setup not Gaussian free.

In this paper we show how a cluster tree can also be built
without using Gaussians by adapting the entropy distance met-
ric to work with the probability distribution generated by the
output layer of a CI HMM/DNN AM. This then leads to the
ability to ab able to perform truly GMM free training of an
acoustic model.

Removing the reliance on Gaussians or GMMs simplifies
the flat-start training of state of the art ASR systems. Labs and
institutions that have no previous experience in building ASR
systems now have one less tool that they have to implement if
they wish to build a CD HMM/DNN AM.

The structure of this paper is as follows. After an overview
of the related work in Section 2 a description of cluster trees
is given in Section 3 where our proposed DNN based approach
is compared to the baseline GMM based approach. Section 4
presents the ASR system into which the new DNN based clus-
ter trees are integrated. Their effectiveness is evaluated in Sec-
tion 5. The paper concludes with a summary in Section 6.

2. Related Work
As mentioned in the introduction [7] show how to flat-start a CI
DNN AM. Their approach uses a randomly initialized context
independent DNN AM to generated an alignment on a batch of
data which is then used to train the DNN AM. After several it-
erations it converges. The cluster tree is built by first collecting
each triphone seen in their training data modeling them using
a diagonal covariance Gaussian. Using a list of linguistically
motivated questions greedy top down splitting is performed to
optimize the likelihood gain. They also experiment with various
other input features for their cluster trees and show that cluster
trees built using CI log posteriors outperform the baseline clus-
ter tree.

[8] also show how a CI DNN can be bootstrapped with
equally aligned training data. The classification accuracy of the
CI DNNs can be improved by iteratively realigning the data and
training new CI DNNs on the realignments. During the con-
struction of the cluster tree they assume the posteriors of the CI
DNN to be a Gaussian.

3. Cluster Trees
A language with 40 phonemes and 3 states per phoneme would
require 192000 ( = 3 × 403 ) triphone states or over 300 mil-
lion quinphone states. Many of these states are never seen in the
training data and many are almost identical to each other. Clus-
tering algorithms are used to group these triphone or quinphone
states together and reduce the total number of states that have
to be modeled. This directly affects the size of the DNN-AM’s
output layer.

We refer to a decision trees used to cluster the large number
of possible polyphones into a manageable number of classes
as a cluster tree. The basic procedure requires a set of yes/no
questions that can be asked about phoneme like whether it is a
vowel of if it is at a word boundary. An example cluster tree,
where a set of triphones is split after asking the question ”is the
previous phoneme a vowel” is shown in figure 1.

The following steps describe how to build a cluster tree:

1. Go over the alignment and get statistics on all existing
polyphones.

2. Begin with all polyphones that have the same center
phone clustered into one cluster per HMM state (e.g. be-
gin, middle, end).

3. Select a cluster to split. Each yes/no questions will split
a cluster into two separate clusters. Only take questions
into consideration that produce clusters of a minimum
size. Find the best questions to pose.

4. Split to cluster using the best question and repeat from
step 3 until all clusters that can be split are split.

5. Prune the tree back until it has the desired number of
leaves.

The key point in this procedure is how to find the best ques-
tion. So given two clusters A and B we require a distance met-
ric d(A,B) that is high for good splits and low for bad splits.
A common metric is the weighted entropy distance between A
and B. It is the entropy difference between both clusters being
joined and them being separate. Let the number of occurrence
of each cluster be nA and nB , then the weighted entropy dis-
tance can be defined as:

d(A,B) = (nA + nB)H(A ∪B)− nAH(B)− nAH(B)
(1)

where H(A) is the entropy of cluster A, H(B) is the entropy
of cluster B andH(A∪B) is the entropy of the merged cluster.
Using the equation

H(p) =

k∑
i=1

p(i) log p(i) (2)

we can compute the entropy of a k dimensional probability dis-
tributions. Furthermore given probability distributions (over the
same probability space) pA and pB for both clusters the proba-
bility distribution of the merged cluster can be computed as:

pA∪B(i) =
nA pA(i) + nA pB(i)

nA + nB
(3)

The required probability distributions can be defined in
multiple ways. One method would be to train a single Gaus-
sian on the training examples belonging to a particular cluster.
In this case the probability space would be the feature space.
Another approach uses the discrete mixture weights of a shared
codebook of Gaussians as the feature space.

3.1. GMM based

The GMM based approach requires a fully continuous CI
HMM/GMM system, where each phone (monophone) state is
modeled using a weighted mixture of a set of Gaussians (code-
book) trained specifically for that phone state. For all poly-
phone states appearing in the training data derived from the
same monophone state a new GMM is trained by only learning
the mixture weights and keeping the codebook of the mono-
phone. This results in a semi continuous HMM.

In semi-continuous HMMs, although the emission distribu-
tions of HMM states are still modeled by GMMs, the emission
distributions can be represented by just their mixture weights.
Furthermore, the normalized mixture weights of polyphone
states can be regarded as the probabilities of a discrete distri-
bution. Each mixture weight can be interpreted as the a priori
probability of a codeword (Gaussian). As a result, the similar-
ities between clusters represented as GMMs can be measured
using entropy distance via their mixture weights.



Figure 1: An example cluster tree for the center phone E. The
notation E(A|D) indicated that the phone E is precedes by
the phone A and followed by the phone D. The question ”-1=
vowel” asks if the preceding phone is a vowel.

3.2. DNN based

Our novel DNN based clustering approach leverages the classi-
fication ability of a context independent DNN. For each input
feature vector a discrete probability distribution of underlying
generative monophone states can be calculated using a CI DNN.

A CI DNN is trained using the aligned phone states as tar-
gets. The softmax activation function of the final layer guaran-
tees that it will output a probability distribution. The average CI
DNN output of a polyphone state can be calculated by summing
the CI DNN output vectors of all the feature vectors assigned to
it, then dividing the sum by the count of feature vectors. Our
novel approach rests on the idea that similar polyphone states
should also have similar average CI DNN outputs, moreover the
average CI DNN output can also be regarded as a discrete dis-
tribution, therefore entropy distance between polyphone states
can be measured based on their average CI DNN outputs:

pA(i) =
1

nA

nA∑
j=1

PDNN (si, Fj) (4)

PDNN (si, Fj) is the probability distribution generated by
the CI DNN for the feature Fj . All features Fj are examples
of the polyphone cluster A. After calculating it’s entropy using
equation 2 the weighted entropy distance d(A,B) between two
classes can now be computed without using any Gaussians.

4. ASR system
In this work all experiments, including the training of acous-
tic models, the building of the cluster trees and the evaluation
of the ASR systems, are carried out with the Janus Recogni-
tion Toolkit (JRTk) which is developed at Karlsruhe Institute of
Technology and Carnegie Mellon University [9].

Text corpus # Words
TED 2,685k
News+Newscrawl 1,500M
Euro Language Newspaper 95,783k
Common Crawl 51,156k
Europarl 49,008k
ECI 14,582k
MultiUN 6,964k
German Political Speeches 5,695k
Callhome 159k
HUB5 20k
Google Web (118m n-grams)

Table 1: German language modeling data after cleaning and
compound splitting. In total, we used 1.7 billion words, not
counting Google Ngrams.

4.1. Data

We used the following data sources to train the acoustic model:

• 180 hours of Quaero training data from 2009 to 2012.

• 24 hours of broadcast news data

For language model training texts from various sources like
webdumps, scraped newspapers and transcripts are used. The in
text corpora listed in Table 1 range in size from about 5 MByte
to just over 6 GByte and are split into 28 sub corpora.

4.2. Acoustic models

We used a context dependent quinphone setup with three states
per phoneme (except silence with is only modeled with one
state) and a left-to-right topology without skip states. Our sys-
tems are based of the best single system from the 2014 IWSLT
evaluation systems [10]. We extract 40lMel features from the
audio using a 32ms window and a 10ms frame shift and aug-
ment them with tonal features [11]. All models use vocal tract
length normalization (VTLN).

The context independent CI DNN AM on which the DNN
based cluster trees are trained uses an input feature window of
15 and containes four hidden layers with 1200 neurons. Its out-
put layer consists of 139 neurons, one for each of the three states
of the 46 phones in our phone set and an extra one for silence.
The hidden layers were first pre-trained with stacked denoising
autoencoder (SdA) on the training data. After the pretraining of
four hidden layers is completed, a logistic regression layer with
139 output neurons is added on top of the hidden layers. Then
the DNN is fine-tuned with the supervised BP algorithm. The
CI DNN is trained for 13 epochs and the CI ASR system based
on it produces a WER of 26.9%. We consider this performance
sufficient to estimate the a posteriori probabilities of the under-
lying monophone states given a feature vector and hence deem
it suitable for cluster tree building.

The CI GMM AM on which the GMM based cluster trees
are trained uses incremental splitting of Gaussians (MAS) train-
ing, followed by optimal feature space training and 2 iterations
of Viterbi training.

The CD DNN AM is built using a modular DNN [12]. This
involves stacking the deep bottleneck features over a window
of 13 frames as the input to a NN with five 1600 unit hidden
layers and an output layer containing as many neurons as its as-
sociated cluster tree has leaves, each corresponding to a context



dependent phone state. The deep bottleneck features are ex-
tracted using an MLP with five 1600 unit hidden layers prior to
the 42 unit bottleneck layer. Its inputs are 40 lMel and 14 tone
features stacked over a 13 frame window. Both neural network
modules are pretrained as denoising autoencoders. Pretraining
and fine-tuning are implemented using Theano [13].

4.3. Language models

A tuning set was randomly selected form the AM training data
transcripts. The 300k vocabulary is selected by building a
Witten-Bell smoothed unigram language model using the union
of all the text sources vocabulary as the language models vo-
cabulary (global vocabulary). With the help of the maximum
likelihood count estimation method described in [14] we found
the best mixture weights for representing the tuning sets vocab-
ulary as a weighted mixture of the sources word counts thereby
giving us a ranking of all the words in the global vocabulary
sorted by their relevance to the tuning set. Using this 300k vo-
cabulary, a 4gram case sensitive language model with modified
Kneser-Ney smoothing was built for each of the sub corpora.
This was done using the SRI Language Modeling Toolkit [15].

5. Experimental setup
We evaluate the effectiveness of the proposed DNN based clus-
ter tree by building quinphone cluster trees of various sizes from
3k leaves to 21k leaves and compare them to cluster trees built
using the baseline GMM approach. For each cluster tree a mod-
ular DNN AM is trained with the appropriate output layer. As
can be seen in Figure 2 larger cluster trees outperform smaller
cluster trees up to 18k leaves. The reduction in WER appears to
be almost linear until about 12k leaves after which more leaves
lead to less of an improvement. Since the WER started to deteri-
orate with cluster trees containing 21k or more leaves we halted
our experiment at there. For the smaller cluster trees the base-
line GMM based approach performed slightly better than the
DNN based approach but for the larger and better cluster trees
the DNN based approach consistently outperformed the GMM
based approach.

Using the McNemar statistical test we compared the
aligned hypothesis of both 18k systems and found the system
using the DNN based cluster tree to be significantly better than
the GMM based cluster tree with p < 0.001.

This shows that our DNN based cluster trees are not only
a simple replacement for GMM based cluster trees in situations
where CI-GMM AM are not available but can also outperform
them.

6. Conclusion
In this work we have proposed a novel DNN based approach
to building cluster trees and performed multiple experiments to
confirm the functionality of our approach. We show how the
entropy distance metric can adapted to work with the probabil-
ity distribution generated by the output layer of a CI DNN AM
thereby allowing us to build a cluster tree without using Gaus-
sians. Eliminating the need for Gaussians in the construction of
a cluster tree allows flat-started CI HMM/DNN AM systems to
easily bootstrap a CD HMM/DNN AM. For the larger cluster
trees with more than 12k leaves that produce CI HMM/DNN
AMs with the lowest WER our DNN based approach outper-
forms the GMM based approach. The overall bwst system used
a DNN based cluster tree with 18k leaves. In future work we
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Figure 2: A comparison of our DNN base cluster tree with
a baseline GMM based cluster tree. We built cluster trees of
various sizes between 3k leaves to 21k leaves and tested them
on the IWSLT 2012 development set.

hope further analyze the difference between the DNN based
cluster trees and the GMM based cluster trees to in particular
to find out why the DNN based approach is only better for clus-
ter trees with a large number of leaves. We also wish to evaluate
the effectiveness of other probability distributions.
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