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ABSTRACT

In particular for “low resource” Keyword Search (KWS) and
Speech-to-Text (STT) tasks, more untranscribed test data may be
available than training data. Several approaches have been proposed
to make this data useful during system development, even when
initial systems have Word Error Rates (WER) above 70%. In this
paper, we present a set of experiments on low-resource languages
in telephony speech quality in Assamese, Bengali, Lao, Haitian,
Zulu, and Tamil, demonstrating the impact that such techniques can
have, in particular learning robust bottle-neck features on the test
data. In the case of Tamil, when significantly more test data than
training data is available, we integrated semi-supervised training
and speaker adaptation on the test data, and achieved significant
additional improvements in STT and KWS.

Index Terms— spoken term detection, automatic speech recog-
nition, low-resource LTs, semi-supervised training

1. INTRODUCTION

Low-resource speech and language technology has been a focus
area for several research groups over the last several years. Semi-
supervised training of (Deep Neural Network based) acoustic mod-
els can be used to exploit situations in which more audio data is
available than has been transcribed [1, 2], despite baseline Word (or
Token) Error Rates (WER/ TER) hovering around 70%.

Despite the existence of an active community that is developing
pattern-matching approaches to keyword search [3, 4, 5], the pre-
dominant approach is still to develop a word-based STT system, and
search for keywords in a symbolic index, that is often given by con-
fusion networks (CN, [6]) generated by the recognition process, sim-
ilar to the overall approach described in [7]. In order to be able to
also detect out-of-vocabulary (OOV) keywords, we implement Prob-
abilistic Phonetic Retrieval (PPR, [8]), which performs query expan-
sion using observed phonetic confusions and then searches a phone
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lattice, similar to [9]. Because many low-resource languages also ex-
hibit high morphological complexity, we explored the feasibility of
automatically generating morphemes, and built a morpheme-based
(rather than word-based) system.

In this paper, we describe our efforts to build STT and KWS
systems for six low-resource languages, highlight the most important
achievements, and report the final performance achieved on each of
them in the Babel program [10] and OpenKWS [11] evaluations.

2. TASK AND DATA DESCRIPTION

For our task, the primary evaluation metric is “Actual Term Weighted
Value” (ATWV), a weighted combination of precision and recall av-
eraged over a given list of keywords, computed under the “NTAR”
(No Target Audio Reuse) condition, i.e. audio data was processed
without knowledge of the keywords, and keyword search was per-
formed on an index, without accessing the original audio [11].
STT is evaluated using standard WER/ TER. We worked on the
Babel Option Period 1 (OP1) “development” languages and the
OpenKWS 2014 “surprise” language, Tamil.1 The following condi-
tions were defined for system training:

FullLP, the “Full Language Pack”, consists of ˜60 h of annotated
speech for each of the languages used

LimitedLP, the “Limited Language Pack”, consists of ˜10 h of an-
notated speech, plus the remaining 50 h of FullLP audio with-
out transcriptions, allowing for semi-supervised training

OtherLR allows the addition of external data. In our case, we
downloaded and added text data from the Internet

Most of the data is telephone-quality speech, recorded in a num-
ber of different environments, including car kits and hands-free de-
vices on cell-phones in the street. Tamil contained some data with
room acoustics, which was not treated differently in our work.

For development purposes, 10 h of test data were available for
every language, while the unseen test data consisted of 75 h in Tamil,
and 15 h each for all the other languages. In Tamil, an 15 h “Eval-
Part1” subset (of the 75 h set) has also been defined. Hence, in
the “LimitedLP” condition, and for Tamil in particular, more data
is available to test systems, than to train them. Table 1 lists the char-
acteristics of the data sets. Even though various keyword lists were
used during development, results shown in this paper have been com-
puted with the official “evaluation” keywords that were distributed
with the evaluation data, unless noted otherwise.

1 IARPA-babel102b-v0.4 (Assamese), IARPA-babel103b-v0.3 (Bengali),
IARPA-babel201b-v0.2b (Haitian Creole), IARPA-babel203b-v3.1a (Lao),
IARPA-babel206b-v0.1e (Zulu), and IARPA-babel204b-v1.1b (Tamil).



FullLP Assam. Beng. Haitian Lao Zulu Tamil
Vocab. 22 k 24 k 13 k 6.2 k 54 k 52 k
OOV 3.4% 3.8% 1.6% 0.5% 11.9% 8.6%
PPL 245 295 137 112 420 414
LimitedLP (10 h subset of 60 h “FullLP”)
Vocab. 7.7 k 7.9 k 4.9 k 3.2 k 14 k 14 k
OOV 8.0% 8.7% 3.8% 2.0% 20.2% 15.1%
PPL 243 291 157 134 299 343

Table 1. Characteristics of the data sets used in this work. OOV
rate and perplexity (PPL) have been computed against the 10 h de-
velopment set, using the training data’s vocabulary.

3. SYSTEM OVERVIEW

The STT systems were built using the Janus ASR toolkit using the
Ibis decoder [12]. Retrieval is based on a confusion network-based
index that has been generated from a union of lattices from several
decoding passes, as described in Section 4. Posting lists from multi-
ple retrieval systems are combined together using CombMNZ [13].
Compared to our earlier work [14], the main novelties are:

• Automatic segmentation of the test data is now performed us-
ing Kaldi [15], and shared within the RADICAL team’s Kaldi
and Janus systems.

• The code for lattice and confusion network generation has
been re-written in order to retain more variability in the re-
sulting index [16]. Pruning thresholds have been optimized
across all available Babel languages.

• Retrieval (Keyword Search) is now using Probabilistic Pho-
netic Retrieval (PPR) in order to be able to detect out-of-
vocabulary (OOV) words.

• Automatic (pseudo-)morphological decomposition of the
words of a language has been employed to further improve
retrieve out-of-vocabulary (OOV) words, c.f. Section 4.5.

• The “recipes” for training systems under “FullLP” and
“LimitedLP” conditions have been streamlined, and sev-
eral new techniques have been incorporated, including
semi-supervised training and Maxout DNNs for LimitedLP,
c.f. Section 4.3.

4. EXPERIMENTS

All systems used in these experiments are based on three different
feature sets, which are used as inputs to DNN bottle-neck feature
extractors [17], namely BNF MFCC+Janus Pitch [18] (“MFCC”),
BNF lMEL+FFV [19] (“lMEL”), and BNF PLP+Kaldi Pitch [20]
(“PLP”), with per-speaker CMS/ CVN normalization of features. All
systems use trigram language models trained on the appropriate data
set, unless otherwise noted. The lexicon was used as provided, with
some rare phones merged, and tones integrated as tags, if given in a
particular language.

4.1. FullLP System

The FullLP systems are a 7-way combination of individual systems:
a first-pass unadapted and ML trained GMM model in a lMEL fea-
ture space, and then three hybrid DNN and three bMMIE-trained
GMMs in three BNF feature spaces generated as described above,
then adapted by cMLLR [21]. The GMMs have been trained with

WER/ ATWV MFCC lMEL PLP
ML 70.9%/ .332
SAT bMMIE 69.1%/ .350 69.0%/ .339 68.4%/ .349
DNN 69.1%/ .352 68.5%/ .359 68.2%/ .357
7-way Combo 64.7%/ .433

Table 2. Performance of the individual components of the Tamil
FullLP system on development data.

semi-tied covariances and LDA, stacking 7 frames, the hybrid mod-
els use a context window of 11 frames.

The MFCC and lMEL hybrid acoustic models use i-vector
speaker normalization [22, 23], while the DNNs were trained with
ReLU nonlinearities [24], mostly for speed reasons.

Table 2 lists the performance of the individual sub-systems, as
well as the final performance in Tamil. Figure 1 shows the perfor-
mance on evaluation data, and for the other languages. All sub-
systems perform similarly for all languages, i.e. there is a slight ad-
vantage of hybrid over BNF-GMM models. Greedy system com-
bination using ROVER or CombMNZ [13] almost always mandated
the inclusion of all seven systems (“7-way Combo”) on development
data, so that it was used in all evaluation submissions.

For simplicity, no OOV retrieval was performed for the KWS
task in the “FullLP” condition.

4.2. “Single” System

For fast and simple indexing, we investigated the performance of a
single, unadapted hybrid acoustic model, trained on FullLP data in
lMEL feature space, using a FullLP language model. On average,
this system performed best of all individual systems. The perfor-
mance of these systems is shown in Figure 1 in Section 5. Adding
OOV retrieval [8] improved ATWV by about .01 for Zulu and Tamil.
It was however only included in a Virtual Machine-based prototype,
which can be used to easily analyze a set of data in any of the six
languages covered in this work, but not the evaluation submissions
described here.

4.3. LimitedLP System

For the LimitedLP case, we developed three sub-systems for each
language, one for each of the MFCC, lMEL, and PLP feature spaces.
Initial supervision for adaptation is again generated by an unadapted
and ML trained GMM model with lMEL features. In contrast to Ful-
lLP, every sub-system uses four acoustic models: two hybrid DNNs
and two bMMIE-GMMs, which were trained in a standard sigmoid
BNF feature space as well as a Maxout [25, 26] BNF feature space.
Each subsystem’s output is either the consensus word hypothesis
generated on four individual lattices, or the retrieval result generated
from the combined consensus network of these four individual mod-
els. As in the “FullLP” case, the hierarchical use of DNNs trained on
top of BNF features creates a TDNN-like [27], almost-convolutional
[28] structure with fast training time [17]. Attempts at using i-vector
speaker normalization [22] and data augmentation techniques [29]
did not consistently improve results at the time of the evaluation,
and were therefore not included. The three sub-systems are then
combined using Rover (for STT) or CombMNZ (for KWS), in order
to produce the final output.

Table 3 shows the results of our semi-supervised training exper-
iments. In each case, we select the 50 % of training segments with
highest averaged word confidence score, and retrained BNF features



WER (%) Ass. Ben. Haitian Lao Zulu Tamil
LimitedLP 62.4 65.5 61.9 60.5 67.9 74.0
SS1 60.3 63.0 57.7 56.6 65.8 72.2
SS2 58.7 61.3 - - - 70.9
ATWV
LimitedLP .255 .223 .318 .316 .273 .218
SS1 .289 .264 .369 .371 .305 .251
SS2 .312 .284 - - - .274

Table 3. Semi-supervised training experiments: “SS1” lists semi-
supervised training on the training data, while “SS2” shows perfor-
mance after re-training on the evaluation data (15 h, except Tamil,
which has 75 h). ATWV values are reported using “development”
keywords, which for most languages are “harder” than the evaluation
keywords, and using word-based retrieval only (i.e. no morphemic
systems, no PPR).

WER/ ATWV MFCC lMEL PLP
CNC SS1 72.2%/ -
CNC SS2 72.1%/ .253 71.9%/ .268 71.8%/ .281
3-way Combo 70.5%/ .313

Table 4. Performance of the different training strategies for the
Tamil LimitedLP system. Results are given using evaluation key-
words on evaluation data, without morphemic systems or PPR.

with the expanded training data in a cMLLR adapted feature space
[21]. GMM training, GMM adaptation and hybrid acoustic model
training are performed using only 10 h of supervised data.

Table 4 breaks down the results of the individual sub-systems in
the case of the SS2-Tamil system. The other languages show similar
relative performance levels. SS2 systems were not built for Haitian,
Lao, and Zulu, because performance goals could be achieved without
the extra computation required to perform training of the SS2 system
using the SS1 hypotheses, while SS1 was itself trained using a pure
LimitedLP system’s hypotheses.

By using cross-adaptation with a Kaldi-based system [15], re-
sults could typically be improved further by 0.5 % WER and 0.01
in ATWV, exploiting the diversity between these systems, however
evaluation timing constraints did not permit integration.

4.4. “OtherLR” Systems based on Webtext

One way to reduce the OOV rate of a recognizer is to download ad-
ditional text from the Internet or other data sources, from which an
expanded vocabulary and additional language model training text is
gathered [30]. Using such resources places a system submission into
the “OtherLR” category. We generated queries to language-specific
Google servers from the LimitedLP training text, which we then
used to download additional text documents. We also downloaded
Wikipedia in each of these languages, and created an (almost) lan-
guage independent text normalization and filtering process, which
we applied to these corpora.

Table 5 shows the amount of data crawled, and the resulting
OOV rate and ATWV. After filtering HTML tags, English words,
and non-text parts, the merged data was sorted according to perplex-
ity and vocabulary overlap, and the fraction that empirically best
matched the development data was retained.

No improvements could be achieved on Assamese, presumably
because the data crawled was too similar to Bengali, and Lao. The
crawls were conducted in two parts: one part was done in October/

Lines of text Ass. Ben. Haitian Zulu Tamil
Queried 95 k 181 k 333 k 318 k 204 k
Wikipedia 274 k 1.6 M 1.3 M 48 k 5.4 M
OOV rate
KWS 24.8 % 13.4 % 25.6 % 33.6 % 30.2 %
TXT 6.4 % 7.9 % 2.9 % 14.3 % 13.0 %
ATWV
LimitedLP .311 .318 .370 .305 .302
OtherLR .310 .340 .394 .362 .313

Table 5. Characteristics of the web data downloaded, and result-
ing benefit. 67 k lines of text from a government web-site (ZA-
Corp) were added to the Zulu Wikipedia data (48 k lines), as they
were empirically found to be helpful. OOV rates, measured against
evaluation keywords (“KWS”) and against the development test set
(“TXT”), as well as ATWV (on dev data) are also reported, c.f. Ta-
ble 7. For a comparison with the morphemic strategy, see Table 6.
The Lao baseline OOV rate was already low, so no experiments were
performed.

ATWV Ass. Ben. Haitian Zulu Tamil
Baseline .311 .318 .370 .305 .302
OOV ATWV .084 .083 .164 .132 .074
Fused ATWV .330 .322 .388 .326 .312
OOV 1.2 % 3.2 % 1.2 % 0.3 % 0.1 %

Table 6. OOV rates (with respect to keywords) and ATWV for
morphemic systems on evaluation data. For a comparison with the
“OtherLR” webtext-based strategy, c.f. Table 5.

November 2013, and a second part was done in January/ February
2014. On average, the text from both crawls performed about the
same, and merging the results did not improve overall results much,
so that we believe that the presented results represent the optimum
that can be achieved with our technique, and no significant depen-
dency on “time of crawl” or other random factors exists.

4.5. Influence of Morphemic Systems

We performed several experiments training a segmentation model
on LimitedLP data using Morfessor-Cat (version 0.9.2, [31]),
Fast umorph (https://github.com/vchahun/fast umorph) and also
a data-driven segmentation developed at JHU. Overall, Morfessor
performed best, so we will not present further details on the other
approaches. The The trained model was used to segment the lexicon,
the language model text and the keywords. The pronunciations for
pseudo-morphemes were obtained using G2P [32], trained on the
LimitedLP lexicon. Acoustic Models were used as-is. In Tamil,
a small gain was realized by re-training the morpheme acoustic
models using the morpheme vocabulary. The final system output
is generated by combining the posting lists generated by the word-
based and morpheme-based retrieval systems.

Parameters were optimized on Zulu (fixing the perplexity thresh-
old b = 50), and then applied to the other languages, c.f. Table 6.

4.6. “Radical” Systems

For both LimitedLP and FullLP system, system combination was
performed with the Kaldi systems described in [15], using ROVER
and CombMNZ between all available systems respectively. Figure 1
shows that a significant gain was achieved in every condition.



In the case of Tamil, the fused Kaldi keyword list was rescored
using a Poisson Point Process Model [33], before this list was fused
with a fused Janus list, which resulted in a boost of about .015
in ATWV alone. Also, the class-based language model described
in [15] was also used in the Janus LimitedLP Tamil system, how-
ever the expanded lexicon technique did not improve performance
of Janus-based systems with respect to either ATWV or WER.

Fig. 1. ATWV (top) and WER (bottom) achieved on evaluation data.
The “LimitedLP Rad.” and “FullLP Rad.” conditions represent the
“Radical” team’s combination of the systems presented in this paper
with the Kaldi systems described in [15]. No WERs were computed
for “OtherLR”, as the web-text language models were often mis-
matched, and did not improve WER.

5. DISCUSSION

Table 7 lists the results achieved by the Janus-based systems in the
OpenKWS/ Babel OP1 evaluation using development data and eval-
uation keywords. Figure 1 shows the ATWV and WER achieved
by the submitted systems on unseen evaluation data. It can be seen
that all systems comfortably achieve ATWV>0.3 in the LimitedLP
condition, the goal for Babel program performers. Generally, perfor-
mance on development and evaluation data is very similar, and the
languages behave as one would have predicted by looking at their
vocabulary growth and OOV characteristics, i.e. Tamil and Zulu are
hardest, followed by Assamese and Bengali.

It is interesting to note that the FullLP (60 h trained) “Single”
systems data are generally just slightly better than the (10 h) “Limit-
edLP” systems w.r.t. WER, and comparable in terms of ATWV. The
“LimitedLP” systems consist of a combination of 12 acoustic mod-
els in three different feature spaces. Transcribing an additional 50 h
of data therefore facilitates KWS greatly, even if comparable perfor-
mance can be achieved using only 10 h of transcribed data.

This paper analyzed the wealth of data generated by submitting
competitive STT and KWS systems to the 2014 OpenKWS and Ba-

WER (%) Ass. Ben. Haitian Lao Zulu Tamil
FullLP 49.7 52.2 45.8 43.4 54.8 63.9
LimitedLP 58.0 60.3 55.7 54.4 65.1 70.2
ATWV
FullLP 0.50 0.50 0.59 0.57 0.53 0.47
LimitedLP 0.35 0.34 0.44 0.44 0.37 0.32

Table 7. Summary of results obtained on the evaluation sets of the
OpenKWS 2014/ Babel OP1 languages, using evaluation keywords,
and the evaluation data. Development focused on the “LimitedLP”
condition; Tamil results were achieved within a four-week window
for training a system and processing the evaluation data.

Fig. 2. Best Word Error Rate (%) of Janus Tamil systems over time
during OpenKWS 2014, on development data. Effort was almost lin-
ear over time, although work on the “FullLP” systems started only
once the initial “LimitedLP” systems had been built. “SS1” systems
became available on Apr 9, and were only tuned slightly after. Mor-
phological LMs were introduced on April 20, while “SS2” systems
were introduced on April 28, but did not improve performance on
development data quite as much as they helped on evaluation data
(hence the smaller “drop” in WER shown here). System combina-
tion became standard for FullLP experiments on April 17.

bel evaluations. Even with a large team, and a month’s time, system
performance seems to be already in an asymptotical regime, and only
small gains can be achieved towards the end, as shown in Figure 2.

The systems presented here were developed with a focus on the
“LimitedLP” condition, and the STT performance is on par with the
top-performing teams in the OpenKWS evaluation. KWS perfor-
mance however is relatively lacking for OOV words. Probabilistic
phonetic retrieval, web-text based vocabulary and language model
expansion, and the generation of a purely data-driven morpheme-
based index present three approaches that ameliorated this problem
to some extent only. Semi-supervised training of BNF features was
applied successfully on training and test data in a low-resource set-
ting, with little initial training data and high error rates.
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