Probabilistic Techniques for Robot Navigation

A Key Technology for Our Future Society

Wolfram Burgard

Key Challenges in Navigation

Highly accurate localization Robust mapping Long-term autonomy

Nature of Data

Odometry Data

Range Data

Probabilistic Robotics

Explicit representation and utilization of uncertainty

Perception = state estimation

Action = utility optimization

Probabilistic Robotics

Explicit representation and utilization of uncertainty

- Perception = state estimation $Bel(x \mid z, u) = \alpha p(z \mid x) \int_{x'} p(x \mid u, x') Bel(x') dx'$
- Action = utility optimization

$$\pi^*(x) = \operatorname{argmax}_{u} \sum_{x'} p(x' \mid u, x) V^*(x')$$

MCL: Global Localization (Sonar)

Precise Localization and Positioning for Mobile Robots

Accurate Localization

- KUKA omniMove (11t)
- Safety scanners
- Error in the area of millimeters
- Even in dynamic environments

26 Units installed at Boeing

- Fuselage assembly
- 20 vehicles to transport industrial robots for drilling and filling of 60,000 fasteners in
- 6 vehicles for logistics of parts, work stands and fuselages

Accurate Indoor RGB-D Localization with a Google Tango Device based on 2D Floor Plans

Wera Winterhalter, Freya Fleckenstein, Bastian Steder, Wolfram Burgard, Luciano Spinello

How to Learn a Map: SLAM

- Problem described as a graph
 - Every node corresponds to a robot position and to a laser measurement
 - An edge between two nodes represents a datadependent spatial constraint between the nodes

 Once we have the graph, we determine the most likely map by "moving" the nodes

- Once we have the graph, we determine the most likely map by "moving" the nodes
- … like this.

- Once we have the graph, we determine the most likely map by "moving" the nodes
- ... like this.
- Then we render a map based on the known poses

Freiburg Campus Octomap

3D Map of the Stanford Parking Garage

approx. 260MB

Autonomous Parking

Autonomous Navigation in Urban Areas

Can we build a robot that is able to navigate autonomously through city centers?

Challenge: Canals

Challenge: Kids

The Tagesthemen-Report

Learning Driving Styles

- Users have different expectations
- Many parameters such as accelerations, distances, velocities, etc.

 Difficult to tune parameters for non-technical users

Learning Driving Behavior

Online Prediction of User Preferences

Neurobots

And what's next?

Deep Learning

Applications in Robotics ...

RGB-D

Images

Sound

- 🖛 🌍 🎆

object

Terrain Classification using a Late Fusion DCNN Architecture

Glare

Autonomous Navigation in Outdoor Areas

... and End to End Navigation

Outlook

- With deep learning a new massively parallel and data intensive paradigm has come up that outperforms classical approaches
- Deep learning will play a major role in robotics through the concept of end-to-end learning where no programming is needed.

Summary

- Probabilistic methods are a powerful tool for realizing autonomous systems
- The corresponding state estimation procedures provide the means for robust navigation systems