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Human Language Technology (HLT)

Automatic Speech Recognition (ASR) Statistical Machine Translation (SMT)

wir wollen diese grof3e Idee erhalten

PSS\

we want to preserve this great idea

Handwriting Recognition tasks:
(Text Image Recognition) — speech recognition
— machine translation
L tLis

— handwriting recognition
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unifying view:
— input string — output string
— output string: natural language

we want reserve reat idea




RWTH’s Joint Projects with InterACT: KIT, CMU or HKUST R

e VERBMOBIL 1993-2000: funded by German BMBF
toy task (8000-word vocabulary): recognition and translation for appointment scheduling

e TC-STAR 2004-2007: funded by EU
— real-life task, open domain, large vocabulary:
first research system for speech translation (EU parliament)
— partners: KIT Karlsruhe, FBK Trento, LIMSI Paris, UPC Barcelona, IBM-US Research, ...

e GALE 2005-2011: funded by US DARPA
— emphasis on Chinese and Arabic speech and text
— largest project ever on speech and language: 40 Mio USD per year

e BOLT 2011-2015: funded by US DARPA
emphasis on colloquial text for Arabic and Chinese

e QUAERO 2008-2013: funded by OSEO France
European languages, more colloquial speech, handwriting

e EU-BRIDGE 2012-2014: funded by EU
emphasis on recognition and translation of lectures (TED, ...)

e BABEL 2012-2016: funded by US IARPA
speech recognition for low-resource languages (and noisy audio!)
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Evaluation Campaigns: InterACT (KIT)

evaluations of ASR and SMT systems:

e project related evaluations:
— VERBMOBIL
— TC-STAR
— QUAERO
— EU-BRIDGE

¢ public evaluation campaigns:
— NIST/LDC/DARPA
— IWSLT (organized by InterACT members)
— ACL WMT

e joint submissions with KIT/InterACT:
system combination
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Statistical Approach: No Alternative
(incl. Artificial Neural Networks!)
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e fundamental problem in ASR:
non-linear time alignment

e Hidden Markov Model:

— linear chain of states s =1, ..., S
— transitions: forward, loop and skip

o trellis:

— unfold HMM over time t = 1,...,T
— path: state sequence sT = sj...5:...57
— observations: z{ = z...x¢...x7

general view:

Hidden Markov Models (HMM)

CHACHCACECRACRCRS;

RWTH

STATE INDEX

TIME INDEX

— two sequences without synchronization: acoustic vectors and states (with labels)
— HMM: mechanism that takes care of the synchronizatiojn (=alignment) problem
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Hidden Markov Models (HMM) R

The acoustic model p(X|W) provides the link between
word sequence hypothesis W and observations sequence X = =1 = z;...x¢...z7:

e acoustic probability p(x1|W) using hidden state sequences s!:

p(wrﬂw) = Zp(wrira Srir|W) = Z H[p(3t|3t—1a W) - p(x|se, W))

51

e two types of distributions:
— transition probability p(s|s’, W): not important
— emission probability p(x:|s, W): key quantity
realized by GMM: Gaussian mixtures models (trained by EM algorithm)

e phonetic labels (allophones, sub-phones): (s, W) — a = asw

p($t|37 W) = p($t|asw)

typical approach: phoneme models in triphone context:
decision trees (CART) for finding equivalence classes

e refinements:
— augmented feature vector: context window around position ¢
— subsequent LDA (linear discriminant analysis)
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Hybrid Approach: HMM and ANN N

consider modelling the acoustic vector x; in an HMM:
e re-write the emission probability for annotation label a and acoustic vector x;
(strictly speaking: an approximation only):

p(a|z)

p(a)

— prior probability p(a): estimated as relative frequencies
— for recognition purposes: the term p(x;) can be dropped

p(xila) = p(xy) -

e result: model the label posterior probability by an ANN:
xy — p(alx;)

rather than the state emission distribution p(x;|a)

e justification:
— easier learning problem: labels ¢ = 1, ...,5000 vs. vectors x; € IRP=%
— well-known result in pattern recognition/machine learning;
but ignored in ASR due to the mathematical beauty of the EM algorithm

H. Ney: Architecture ANN for ASR  ©RWTH 8 InterACT25, KIT, Baden-Baden, 14/15-Jul-2016 @



R\WNTH
History: ANN in Acoustic Modelling

e 1988 [Waibel & Hanazawa™ 88]:
phoneme recognition using time-delay neural networks

e 1989 [Bridle 89]:
softmax operation for probability normalization in output layer

e 1990 [Bourlard & Wellekens 90]:
— for squared error criterion, ANN outputs can be interpreted as
class posterior probabilities (rediscovered: Patterson & Womack 1966)
— they advocated the hybrid approach: use the ANN outputs
to replace the emission probabilities in HMMs

e 1993 [Haffner 93]:
sum over label-sequence posterior probabilities in hybrid HMMs

e 1994 [Robinson 94]: recurrent neural network
— competitive results on WSJ task
— his work remained a singularity in ASR

experimental situation:
— until 2011: ANNs were never really competitive with Gaussian mixture models
— after 2011: yes, deep learning [Deng & Hinton 2012]
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History: ANN in Acoustic Modelling

more ANN approaches:

e 1994 [LeCun & Bengio™ 94]:
convolutional neural networks

e 1997 A. Waibel’s team [Fritsch & Finke™ 97]:
hierarchical mixtures of experts

e 1997 [Hochreiter & Schmidhuber 97]:
long short-term memory neural computation
with extensions [Gers & Schraudolph™ 02]

renaissance of ANN: concepts of deep learning and related ideas:

e 2000 [Hermansky & Ellis* 00]: tandem approach: multiple layers of processing
by combining Gaussian model and ANN for ASR

e 2002 [Utgoff & Stracuzzi 02]: many-layered learning for symbolic processing
¢ 2006 [Hinton & Osindero™ 06]: introduced what he called deep learning (belief nets)
e 2008 [Graves 08]: good results on LSTM RNN for handwriting task

e 2012 Microsoft Research [Dahl & Yut 12]:
— combined Hinton’s deep learning with hybrid approach
— significant improvement by deep MLP on a large-scale task

e since 2012: other teams confirmed significant reductions of WER
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TDNN: Time Delay Neural Network
[Waibel & Hanazawa™ 88]

TDNN: feed-forward multi-layer perceptron with special properties:
— long temporal context
— weight sharing

RWTH

O O O O O O O O O
Ty Ltt2
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Lt+4 Lt+6
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R\WNTH
TDNN: Time Delay Neural Network

o first (?) publication: [Waibel & Hanazawa™ 88] at ICASSP 1988, New York

e full journal paper: [Waibel & Hanazawa™ 89] in
IEEE Transactions on Acouctics, Speech and Signal Processing 1989
— 2036 citations (Google Scholar)
— 1116 citations on 3 more papers on TDNN 1989/90

e recent work by Dan Povey’s team [Peddinti & Povey™ 15] at Interspeech 2015:
improvements over widely used deep MLP approach
— on many of the standard ASR tasks (WSJ, Switchboard, Librispeech, ...)
— on ASPIRE challenge (IARPA, March 2015):
reverberant speech in farfield speech recognition
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Today vs. 1988-94: What is Different?

[o oo ooo oo oo o of

most popular and widely used:

— feed-forward multi-layer perceptron (FF MLP)
— operations: matrix - vector

0 000000 O — nonlinear activation function

©0000000 comparison for ASR: today vs. 1988-1994:

e humber of hidden layers:
10 (or more) rather than 2-3

50000000 e humber of output nodes (phonetic labels):
5000 rather than 50
22 °°00°2 e optimization strategy:

practical experience and heuristics,
e.g. layer-by-layer pretraining
e much more computing power

overall result:
=>°>°2°2°20C° — huge improvement by ANN
— WER is (nearly) halved !!

O O O O O
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R\WNTH
Recurrent Neural Network: String Processing

principle for string processing over timet =1, ...,7T":
— introduce a memory (or context) component to keep track of history
— quantities: input = observation x;, memory h;_;, output distribution y,

Output
yt yl y2 yt—l yt
Y A
C/I;Iidde»n\ ——————— h’t —> h1 > h2 >« = s — ht—l —> ht
7 by ‘:’
Context Input --P ht— 1 Ly Ly Ly Ly Ly

extensions:

— bidirectional variant [Schuster & Paliwal 1997]

— feedback of output labels

— long short-term memory [Hochreiter & Schmidhuber 97; Gers & Schraudolph™ 02]
— deep structure: several hidden layers
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Direct Model of Label Sequence
(spirit of CTC: connectionist temporal classification)

re-formulate the problem of speech recognition:

e sequence of phonetic labels (e.g. CART): a;,s =1,..., S
(which fully determines the sequence of words)

e key quantity: (local) label posterior probability calculated by an ANN
pi(alx]) = pi(alcity

e model localization effect by alignments, i.e. mappings from time to states:
t —> s = s;

state s

O00O0OO0O0OOOOOOOOO

time t
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RWNTH
Direct Model of Label Sequence

sum over all hidden alignments s7:

Zp(al » 51 |w1 ) =

p(a1 |w1)

open issues:

— how to include the transition probabilities
— how to include the language model

— how to perform end-to-end training

requirement:
avoid the global re-normalization as in discriminative/hybrid HMM
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Comparison with Discriminative/Hybrid HMM

e topology: N ”””””’,
conventional HMM structure ,”””””” 0
° important differences: = o | ””””
' S

QR
QR
&
— no joint model p(a? ) mf_) _ E % ”’,’,’,”” A
o
o

- no Q!Iobal re-normalization (e. g. lattice) == (O | ””””’
sopenissues: O b
— transition probabilities . ””””””.
~languagemodel SR
- consistent training criterion: A G ””””””
su;ntover :Itl alignments, L ””””””
end-to-end training,... T T T T T T T T T T T 1

goal: avoid joint probability p(a?;, zT) as in discriminative/hybrid HMM
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Comparison with CTC: connectionist temporal classification
[Graves & Fernandez™' 06]

Coloooad
characteristic properties of CTC: X Q(I) O 0 O m
e topology: for each symbol label: C‘? O o O ',',',',',',',',',','
single state + blank state E O O OO0 000050 0000
- _ Co)l o
e no transition probabilities L t o LAl A A A A
¢ training criterion: sum CO ﬂ- A AT AT AT AT AT AT AT AT
e ANN structure: A C1 O """"""‘
LSTM NN or .7 il s
tinme

experiments for CTC and related neural network approaches:
— good results reported
—reason: LSTM RNN?

— direct comparison: to be done
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Direct Model of Label Sequence: Inverted Alignments

O00OO0OO0OOOOO
OO0O0OO0O0OO O00OO0
OO0OO0OO0O0OE®MOOOOO0OO0
OO OO0O0OO0OO00OO
OO0OO0OO0OO0OOOOOOO0
O0OO0OO0OO0OOOOOOOO

state s

OO0O0O0O0O
OO00O00O0O
OO0OO0O0O0O

time t

— re-interpretation of ASR: segmentation and classification problem
— consider inverted alignments, i.e. from state s to time ¢:

s >t =1,
— sum over inverted alignments as hidden variables ¢

p(aylzy) = Zp(af,tflwf) =

s
2 H pi(aslz) = > ][ pu(aslai™

tS s=1 tf s=1

experiments: underway
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Mechanism of Attention: Alignment by ANN

(originally introduced for MT [Bahdanau & Cho™ 15])

mechanism of attention: Y
ANN only
Ys+1 |« gs+1 [ Cst1 | a(t|ls+1),t=1,...,T
alignment direction:
from state s to time ¢ ys | gs |« cs | al(t|s),t=1,...,T
A
occupation probabilities: o L« o < e T
a(t|s) Y
experiments:
ongoing work, many teams

. [ heoafd] he [ hesa[d] ..

Z... Tt—1 Tt Tt4+1 Z...
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Summary

Architectural Issues of ANN in ASR Systems:

e starting point: direct model of label sequences:
— use ANN output as label posterior probability
— (try to) avoid global re-normalization (no denominator/lattice)

e Open questions:
— how to include transition probabilities?
— how to include language model?
— end-to-end training: suitable training criterion

e some localization is needed: alignments
— inverted alighments vs. traditional alignments
— attention-based mechanism: alternative?

e experimental results: room for improvements
— a large number of ongoing studies
— clear conclusions: difficult
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Congratulations to InterACT and Alex on 25 successful years!

Best wishes for the coming 25 years!
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