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Objectives

To develop spoken dialogue systems which:

1. allow users to access multiple domains within a single
conversation

2. support natural conversations even in rarely visited domains

3. learn automatically on-line through interaction with user

“Deploy, Collect Data, Improve”

“User in the loop™ enables on-line reinforcement learning
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Extending to Wide Domains

Two key problems:

1. How to expand coverage from a single limited domain to
wide or even unlimited domains

2. How to measure success ( and hence a reward signal )



What appointments do |
have tomorrow?
You have a meeting at

10am with John and a

teleconf at noon with Bill.

I need to go to London first
thing, can you reschedule
the meeting with John?
John is free tomorrow at
3pm, is that ok?

Yes, thats fine. | also need
a taxi to the station.

What time do you need

the taxi?
When does the train

depart to London?
The 9.15am gets in at
10.06.
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Bayesian Committee Machine

 Each DM operates independently, receives speech, tracks its own
beliefs and proposes system actions

« DM'’s operate as a Bayesian Committee Machine, each machine’s
Q-value has a confidence attached to it:

Q(b,a)=2%(b,a)) 2%(b,a)"'Q,(b,a)

20 (b,a)" =—(M - 1)*k((b,a),(b,a))" + Y =C(b,a)”

* Reinforcement learning operates on the group, distributing
rewards at each turn according to previous action selection.

Modular, flexible, incremental, trainable on-line, ...

M. Gasic et al (2015). “Policy Committee for Adaptation in Multi-Domain
Spoken Dialogue Systems." IEEE ASRU 15, Scotsdale, AZ.
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Most research results are obtained using paid subjects given prescribed
tasks. Moving to real systems presents problems:

]

Training with Real Users

e Reward depends on task success which is very hard to measure

e Explicit user feedback is costly and unreliable

Solution:
e| earn an embedding function for dialogues (using a Bi-LSTM)

¢ Train a Gaussian Process based classifier to estimate reward success
e Use GP uncertainty estimate to limit use of explicit user feedback

e Use GP noise model to compensate for unreliable user feedback
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On-line Reward Estimation
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On-line Reward Estimation
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Subjective Success (%)

On-line Reward and Policy Learning
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P-H. Su et al (2016). "On-line Active Reward Learning for Policy
Optimisation in Spoken Dialogue Systems." ACL 2016, Berlin.
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Conclusions

e fechnology components are now in place to build large scale wide-
domain spoken dialogue systems

» Capability and user acceptance of Virtual Personal Assistants (VPAS)
will increase rapidly

e Key Is ability to learn on-line thru interaction with users and sharing
data with other VPAs

* VPAs will become autonomous entities, independent of any specific
device

e This will raise many issues: ensuring veracity of VPA derived
information, personal privacy, consumer protection, ...
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